Merge branch 'fixes-modulesplit' into fixes
[zen-stable.git] / arch / x86 / kernel / cpu / perf_event.c
blob640891014b2ae3dccdef498db11f05a0942145e5
1 /*
2 * Performance events x86 architecture code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
12 * For licencing details see kernel-base/COPYING
15 #include <linux/perf_event.h>
16 #include <linux/capability.h>
17 #include <linux/notifier.h>
18 #include <linux/hardirq.h>
19 #include <linux/kprobes.h>
20 #include <linux/module.h>
21 #include <linux/kdebug.h>
22 #include <linux/sched.h>
23 #include <linux/uaccess.h>
24 #include <linux/slab.h>
25 #include <linux/cpu.h>
26 #include <linux/bitops.h>
28 #include <asm/apic.h>
29 #include <asm/stacktrace.h>
30 #include <asm/nmi.h>
31 #include <asm/compat.h>
32 #include <asm/smp.h>
33 #include <asm/alternative.h>
35 #include "perf_event.h"
37 #if 0
38 #undef wrmsrl
39 #define wrmsrl(msr, val) \
40 do { \
41 trace_printk("wrmsrl(%lx, %lx)\n", (unsigned long)(msr),\
42 (unsigned long)(val)); \
43 native_write_msr((msr), (u32)((u64)(val)), \
44 (u32)((u64)(val) >> 32)); \
45 } while (0)
46 #endif
48 struct x86_pmu x86_pmu __read_mostly;
50 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
51 .enabled = 1,
54 u64 __read_mostly hw_cache_event_ids
55 [PERF_COUNT_HW_CACHE_MAX]
56 [PERF_COUNT_HW_CACHE_OP_MAX]
57 [PERF_COUNT_HW_CACHE_RESULT_MAX];
58 u64 __read_mostly hw_cache_extra_regs
59 [PERF_COUNT_HW_CACHE_MAX]
60 [PERF_COUNT_HW_CACHE_OP_MAX]
61 [PERF_COUNT_HW_CACHE_RESULT_MAX];
64 * Propagate event elapsed time into the generic event.
65 * Can only be executed on the CPU where the event is active.
66 * Returns the delta events processed.
68 u64 x86_perf_event_update(struct perf_event *event)
70 struct hw_perf_event *hwc = &event->hw;
71 int shift = 64 - x86_pmu.cntval_bits;
72 u64 prev_raw_count, new_raw_count;
73 int idx = hwc->idx;
74 s64 delta;
76 if (idx == X86_PMC_IDX_FIXED_BTS)
77 return 0;
80 * Careful: an NMI might modify the previous event value.
82 * Our tactic to handle this is to first atomically read and
83 * exchange a new raw count - then add that new-prev delta
84 * count to the generic event atomically:
86 again:
87 prev_raw_count = local64_read(&hwc->prev_count);
88 rdmsrl(hwc->event_base, new_raw_count);
90 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
91 new_raw_count) != prev_raw_count)
92 goto again;
95 * Now we have the new raw value and have updated the prev
96 * timestamp already. We can now calculate the elapsed delta
97 * (event-)time and add that to the generic event.
99 * Careful, not all hw sign-extends above the physical width
100 * of the count.
102 delta = (new_raw_count << shift) - (prev_raw_count << shift);
103 delta >>= shift;
105 local64_add(delta, &event->count);
106 local64_sub(delta, &hwc->period_left);
108 return new_raw_count;
112 * Find and validate any extra registers to set up.
114 static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
116 struct hw_perf_event_extra *reg;
117 struct extra_reg *er;
119 reg = &event->hw.extra_reg;
121 if (!x86_pmu.extra_regs)
122 return 0;
124 for (er = x86_pmu.extra_regs; er->msr; er++) {
125 if (er->event != (config & er->config_mask))
126 continue;
127 if (event->attr.config1 & ~er->valid_mask)
128 return -EINVAL;
130 reg->idx = er->idx;
131 reg->config = event->attr.config1;
132 reg->reg = er->msr;
133 break;
135 return 0;
138 static atomic_t active_events;
139 static DEFINE_MUTEX(pmc_reserve_mutex);
141 #ifdef CONFIG_X86_LOCAL_APIC
143 static bool reserve_pmc_hardware(void)
145 int i;
147 for (i = 0; i < x86_pmu.num_counters; i++) {
148 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
149 goto perfctr_fail;
152 for (i = 0; i < x86_pmu.num_counters; i++) {
153 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
154 goto eventsel_fail;
157 return true;
159 eventsel_fail:
160 for (i--; i >= 0; i--)
161 release_evntsel_nmi(x86_pmu_config_addr(i));
163 i = x86_pmu.num_counters;
165 perfctr_fail:
166 for (i--; i >= 0; i--)
167 release_perfctr_nmi(x86_pmu_event_addr(i));
169 return false;
172 static void release_pmc_hardware(void)
174 int i;
176 for (i = 0; i < x86_pmu.num_counters; i++) {
177 release_perfctr_nmi(x86_pmu_event_addr(i));
178 release_evntsel_nmi(x86_pmu_config_addr(i));
182 #else
184 static bool reserve_pmc_hardware(void) { return true; }
185 static void release_pmc_hardware(void) {}
187 #endif
189 static bool check_hw_exists(void)
191 u64 val, val_new = 0;
192 int i, reg, ret = 0;
195 * Check to see if the BIOS enabled any of the counters, if so
196 * complain and bail.
198 for (i = 0; i < x86_pmu.num_counters; i++) {
199 reg = x86_pmu_config_addr(i);
200 ret = rdmsrl_safe(reg, &val);
201 if (ret)
202 goto msr_fail;
203 if (val & ARCH_PERFMON_EVENTSEL_ENABLE)
204 goto bios_fail;
207 if (x86_pmu.num_counters_fixed) {
208 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
209 ret = rdmsrl_safe(reg, &val);
210 if (ret)
211 goto msr_fail;
212 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
213 if (val & (0x03 << i*4))
214 goto bios_fail;
219 * Now write a value and read it back to see if it matches,
220 * this is needed to detect certain hardware emulators (qemu/kvm)
221 * that don't trap on the MSR access and always return 0s.
223 val = 0xabcdUL;
224 ret = checking_wrmsrl(x86_pmu_event_addr(0), val);
225 ret |= rdmsrl_safe(x86_pmu_event_addr(0), &val_new);
226 if (ret || val != val_new)
227 goto msr_fail;
229 return true;
231 bios_fail:
233 * We still allow the PMU driver to operate:
235 printk(KERN_CONT "Broken BIOS detected, complain to your hardware vendor.\n");
236 printk(KERN_ERR FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n", reg, val);
238 return true;
240 msr_fail:
241 printk(KERN_CONT "Broken PMU hardware detected, using software events only.\n");
243 return false;
246 static void hw_perf_event_destroy(struct perf_event *event)
248 if (atomic_dec_and_mutex_lock(&active_events, &pmc_reserve_mutex)) {
249 release_pmc_hardware();
250 release_ds_buffers();
251 mutex_unlock(&pmc_reserve_mutex);
255 static inline int x86_pmu_initialized(void)
257 return x86_pmu.handle_irq != NULL;
260 static inline int
261 set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
263 struct perf_event_attr *attr = &event->attr;
264 unsigned int cache_type, cache_op, cache_result;
265 u64 config, val;
267 config = attr->config;
269 cache_type = (config >> 0) & 0xff;
270 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
271 return -EINVAL;
273 cache_op = (config >> 8) & 0xff;
274 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
275 return -EINVAL;
277 cache_result = (config >> 16) & 0xff;
278 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
279 return -EINVAL;
281 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
283 if (val == 0)
284 return -ENOENT;
286 if (val == -1)
287 return -EINVAL;
289 hwc->config |= val;
290 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
291 return x86_pmu_extra_regs(val, event);
294 int x86_setup_perfctr(struct perf_event *event)
296 struct perf_event_attr *attr = &event->attr;
297 struct hw_perf_event *hwc = &event->hw;
298 u64 config;
300 if (!is_sampling_event(event)) {
301 hwc->sample_period = x86_pmu.max_period;
302 hwc->last_period = hwc->sample_period;
303 local64_set(&hwc->period_left, hwc->sample_period);
304 } else {
306 * If we have a PMU initialized but no APIC
307 * interrupts, we cannot sample hardware
308 * events (user-space has to fall back and
309 * sample via a hrtimer based software event):
311 if (!x86_pmu.apic)
312 return -EOPNOTSUPP;
316 * Do not allow config1 (extended registers) to propagate,
317 * there's no sane user-space generalization yet:
319 if (attr->type == PERF_TYPE_RAW)
320 return 0;
322 if (attr->type == PERF_TYPE_HW_CACHE)
323 return set_ext_hw_attr(hwc, event);
325 if (attr->config >= x86_pmu.max_events)
326 return -EINVAL;
329 * The generic map:
331 config = x86_pmu.event_map(attr->config);
333 if (config == 0)
334 return -ENOENT;
336 if (config == -1LL)
337 return -EINVAL;
340 * Branch tracing:
342 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
343 !attr->freq && hwc->sample_period == 1) {
344 /* BTS is not supported by this architecture. */
345 if (!x86_pmu.bts_active)
346 return -EOPNOTSUPP;
348 /* BTS is currently only allowed for user-mode. */
349 if (!attr->exclude_kernel)
350 return -EOPNOTSUPP;
353 hwc->config |= config;
355 return 0;
358 int x86_pmu_hw_config(struct perf_event *event)
360 if (event->attr.precise_ip) {
361 int precise = 0;
363 /* Support for constant skid */
364 if (x86_pmu.pebs_active) {
365 precise++;
367 /* Support for IP fixup */
368 if (x86_pmu.lbr_nr)
369 precise++;
372 if (event->attr.precise_ip > precise)
373 return -EOPNOTSUPP;
377 * Generate PMC IRQs:
378 * (keep 'enabled' bit clear for now)
380 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
383 * Count user and OS events unless requested not to
385 if (!event->attr.exclude_user)
386 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
387 if (!event->attr.exclude_kernel)
388 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
390 if (event->attr.type == PERF_TYPE_RAW)
391 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
393 return x86_setup_perfctr(event);
397 * Setup the hardware configuration for a given attr_type
399 static int __x86_pmu_event_init(struct perf_event *event)
401 int err;
403 if (!x86_pmu_initialized())
404 return -ENODEV;
406 err = 0;
407 if (!atomic_inc_not_zero(&active_events)) {
408 mutex_lock(&pmc_reserve_mutex);
409 if (atomic_read(&active_events) == 0) {
410 if (!reserve_pmc_hardware())
411 err = -EBUSY;
412 else
413 reserve_ds_buffers();
415 if (!err)
416 atomic_inc(&active_events);
417 mutex_unlock(&pmc_reserve_mutex);
419 if (err)
420 return err;
422 event->destroy = hw_perf_event_destroy;
424 event->hw.idx = -1;
425 event->hw.last_cpu = -1;
426 event->hw.last_tag = ~0ULL;
428 /* mark unused */
429 event->hw.extra_reg.idx = EXTRA_REG_NONE;
431 return x86_pmu.hw_config(event);
434 void x86_pmu_disable_all(void)
436 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
437 int idx;
439 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
440 u64 val;
442 if (!test_bit(idx, cpuc->active_mask))
443 continue;
444 rdmsrl(x86_pmu_config_addr(idx), val);
445 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
446 continue;
447 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
448 wrmsrl(x86_pmu_config_addr(idx), val);
452 static void x86_pmu_disable(struct pmu *pmu)
454 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
456 if (!x86_pmu_initialized())
457 return;
459 if (!cpuc->enabled)
460 return;
462 cpuc->n_added = 0;
463 cpuc->enabled = 0;
464 barrier();
466 x86_pmu.disable_all();
469 void x86_pmu_enable_all(int added)
471 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
472 int idx;
474 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
475 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
477 if (!test_bit(idx, cpuc->active_mask))
478 continue;
480 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
484 static struct pmu pmu;
486 static inline int is_x86_event(struct perf_event *event)
488 return event->pmu == &pmu;
491 int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
493 struct event_constraint *c, *constraints[X86_PMC_IDX_MAX];
494 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
495 int i, j, w, wmax, num = 0;
496 struct hw_perf_event *hwc;
498 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
500 for (i = 0; i < n; i++) {
501 c = x86_pmu.get_event_constraints(cpuc, cpuc->event_list[i]);
502 constraints[i] = c;
506 * fastpath, try to reuse previous register
508 for (i = 0; i < n; i++) {
509 hwc = &cpuc->event_list[i]->hw;
510 c = constraints[i];
512 /* never assigned */
513 if (hwc->idx == -1)
514 break;
516 /* constraint still honored */
517 if (!test_bit(hwc->idx, c->idxmsk))
518 break;
520 /* not already used */
521 if (test_bit(hwc->idx, used_mask))
522 break;
524 __set_bit(hwc->idx, used_mask);
525 if (assign)
526 assign[i] = hwc->idx;
528 if (i == n)
529 goto done;
532 * begin slow path
535 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
538 * weight = number of possible counters
540 * 1 = most constrained, only works on one counter
541 * wmax = least constrained, works on any counter
543 * assign events to counters starting with most
544 * constrained events.
546 wmax = x86_pmu.num_counters;
549 * when fixed event counters are present,
550 * wmax is incremented by 1 to account
551 * for one more choice
553 if (x86_pmu.num_counters_fixed)
554 wmax++;
556 for (w = 1, num = n; num && w <= wmax; w++) {
557 /* for each event */
558 for (i = 0; num && i < n; i++) {
559 c = constraints[i];
560 hwc = &cpuc->event_list[i]->hw;
562 if (c->weight != w)
563 continue;
565 for_each_set_bit(j, c->idxmsk, X86_PMC_IDX_MAX) {
566 if (!test_bit(j, used_mask))
567 break;
570 if (j == X86_PMC_IDX_MAX)
571 break;
573 __set_bit(j, used_mask);
575 if (assign)
576 assign[i] = j;
577 num--;
580 done:
582 * scheduling failed or is just a simulation,
583 * free resources if necessary
585 if (!assign || num) {
586 for (i = 0; i < n; i++) {
587 if (x86_pmu.put_event_constraints)
588 x86_pmu.put_event_constraints(cpuc, cpuc->event_list[i]);
591 return num ? -ENOSPC : 0;
595 * dogrp: true if must collect siblings events (group)
596 * returns total number of events and error code
598 static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
600 struct perf_event *event;
601 int n, max_count;
603 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
605 /* current number of events already accepted */
606 n = cpuc->n_events;
608 if (is_x86_event(leader)) {
609 if (n >= max_count)
610 return -ENOSPC;
611 cpuc->event_list[n] = leader;
612 n++;
614 if (!dogrp)
615 return n;
617 list_for_each_entry(event, &leader->sibling_list, group_entry) {
618 if (!is_x86_event(event) ||
619 event->state <= PERF_EVENT_STATE_OFF)
620 continue;
622 if (n >= max_count)
623 return -ENOSPC;
625 cpuc->event_list[n] = event;
626 n++;
628 return n;
631 static inline void x86_assign_hw_event(struct perf_event *event,
632 struct cpu_hw_events *cpuc, int i)
634 struct hw_perf_event *hwc = &event->hw;
636 hwc->idx = cpuc->assign[i];
637 hwc->last_cpu = smp_processor_id();
638 hwc->last_tag = ++cpuc->tags[i];
640 if (hwc->idx == X86_PMC_IDX_FIXED_BTS) {
641 hwc->config_base = 0;
642 hwc->event_base = 0;
643 } else if (hwc->idx >= X86_PMC_IDX_FIXED) {
644 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
645 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - X86_PMC_IDX_FIXED);
646 } else {
647 hwc->config_base = x86_pmu_config_addr(hwc->idx);
648 hwc->event_base = x86_pmu_event_addr(hwc->idx);
652 static inline int match_prev_assignment(struct hw_perf_event *hwc,
653 struct cpu_hw_events *cpuc,
654 int i)
656 return hwc->idx == cpuc->assign[i] &&
657 hwc->last_cpu == smp_processor_id() &&
658 hwc->last_tag == cpuc->tags[i];
661 static void x86_pmu_start(struct perf_event *event, int flags);
663 static void x86_pmu_enable(struct pmu *pmu)
665 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
666 struct perf_event *event;
667 struct hw_perf_event *hwc;
668 int i, added = cpuc->n_added;
670 if (!x86_pmu_initialized())
671 return;
673 if (cpuc->enabled)
674 return;
676 if (cpuc->n_added) {
677 int n_running = cpuc->n_events - cpuc->n_added;
679 * apply assignment obtained either from
680 * hw_perf_group_sched_in() or x86_pmu_enable()
682 * step1: save events moving to new counters
683 * step2: reprogram moved events into new counters
685 for (i = 0; i < n_running; i++) {
686 event = cpuc->event_list[i];
687 hwc = &event->hw;
690 * we can avoid reprogramming counter if:
691 * - assigned same counter as last time
692 * - running on same CPU as last time
693 * - no other event has used the counter since
695 if (hwc->idx == -1 ||
696 match_prev_assignment(hwc, cpuc, i))
697 continue;
700 * Ensure we don't accidentally enable a stopped
701 * counter simply because we rescheduled.
703 if (hwc->state & PERF_HES_STOPPED)
704 hwc->state |= PERF_HES_ARCH;
706 x86_pmu_stop(event, PERF_EF_UPDATE);
709 for (i = 0; i < cpuc->n_events; i++) {
710 event = cpuc->event_list[i];
711 hwc = &event->hw;
713 if (!match_prev_assignment(hwc, cpuc, i))
714 x86_assign_hw_event(event, cpuc, i);
715 else if (i < n_running)
716 continue;
718 if (hwc->state & PERF_HES_ARCH)
719 continue;
721 x86_pmu_start(event, PERF_EF_RELOAD);
723 cpuc->n_added = 0;
724 perf_events_lapic_init();
727 cpuc->enabled = 1;
728 barrier();
730 x86_pmu.enable_all(added);
733 static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
736 * Set the next IRQ period, based on the hwc->period_left value.
737 * To be called with the event disabled in hw:
739 int x86_perf_event_set_period(struct perf_event *event)
741 struct hw_perf_event *hwc = &event->hw;
742 s64 left = local64_read(&hwc->period_left);
743 s64 period = hwc->sample_period;
744 int ret = 0, idx = hwc->idx;
746 if (idx == X86_PMC_IDX_FIXED_BTS)
747 return 0;
750 * If we are way outside a reasonable range then just skip forward:
752 if (unlikely(left <= -period)) {
753 left = period;
754 local64_set(&hwc->period_left, left);
755 hwc->last_period = period;
756 ret = 1;
759 if (unlikely(left <= 0)) {
760 left += period;
761 local64_set(&hwc->period_left, left);
762 hwc->last_period = period;
763 ret = 1;
766 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
768 if (unlikely(left < 2))
769 left = 2;
771 if (left > x86_pmu.max_period)
772 left = x86_pmu.max_period;
774 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
777 * The hw event starts counting from this event offset,
778 * mark it to be able to extra future deltas:
780 local64_set(&hwc->prev_count, (u64)-left);
782 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
785 * Due to erratum on certan cpu we need
786 * a second write to be sure the register
787 * is updated properly
789 if (x86_pmu.perfctr_second_write) {
790 wrmsrl(hwc->event_base,
791 (u64)(-left) & x86_pmu.cntval_mask);
794 perf_event_update_userpage(event);
796 return ret;
799 void x86_pmu_enable_event(struct perf_event *event)
801 if (__this_cpu_read(cpu_hw_events.enabled))
802 __x86_pmu_enable_event(&event->hw,
803 ARCH_PERFMON_EVENTSEL_ENABLE);
807 * Add a single event to the PMU.
809 * The event is added to the group of enabled events
810 * but only if it can be scehduled with existing events.
812 static int x86_pmu_add(struct perf_event *event, int flags)
814 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
815 struct hw_perf_event *hwc;
816 int assign[X86_PMC_IDX_MAX];
817 int n, n0, ret;
819 hwc = &event->hw;
821 perf_pmu_disable(event->pmu);
822 n0 = cpuc->n_events;
823 ret = n = collect_events(cpuc, event, false);
824 if (ret < 0)
825 goto out;
827 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
828 if (!(flags & PERF_EF_START))
829 hwc->state |= PERF_HES_ARCH;
832 * If group events scheduling transaction was started,
833 * skip the schedulability test here, it will be performed
834 * at commit time (->commit_txn) as a whole
836 if (cpuc->group_flag & PERF_EVENT_TXN)
837 goto done_collect;
839 ret = x86_pmu.schedule_events(cpuc, n, assign);
840 if (ret)
841 goto out;
843 * copy new assignment, now we know it is possible
844 * will be used by hw_perf_enable()
846 memcpy(cpuc->assign, assign, n*sizeof(int));
848 done_collect:
849 cpuc->n_events = n;
850 cpuc->n_added += n - n0;
851 cpuc->n_txn += n - n0;
853 ret = 0;
854 out:
855 perf_pmu_enable(event->pmu);
856 return ret;
859 static void x86_pmu_start(struct perf_event *event, int flags)
861 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
862 int idx = event->hw.idx;
864 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
865 return;
867 if (WARN_ON_ONCE(idx == -1))
868 return;
870 if (flags & PERF_EF_RELOAD) {
871 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
872 x86_perf_event_set_period(event);
875 event->hw.state = 0;
877 cpuc->events[idx] = event;
878 __set_bit(idx, cpuc->active_mask);
879 __set_bit(idx, cpuc->running);
880 x86_pmu.enable(event);
881 perf_event_update_userpage(event);
884 void perf_event_print_debug(void)
886 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
887 u64 pebs;
888 struct cpu_hw_events *cpuc;
889 unsigned long flags;
890 int cpu, idx;
892 if (!x86_pmu.num_counters)
893 return;
895 local_irq_save(flags);
897 cpu = smp_processor_id();
898 cpuc = &per_cpu(cpu_hw_events, cpu);
900 if (x86_pmu.version >= 2) {
901 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
902 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
903 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
904 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
905 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
907 pr_info("\n");
908 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
909 pr_info("CPU#%d: status: %016llx\n", cpu, status);
910 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
911 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
912 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
914 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
916 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
917 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
918 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
920 prev_left = per_cpu(pmc_prev_left[idx], cpu);
922 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
923 cpu, idx, pmc_ctrl);
924 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
925 cpu, idx, pmc_count);
926 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
927 cpu, idx, prev_left);
929 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
930 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
932 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
933 cpu, idx, pmc_count);
935 local_irq_restore(flags);
938 void x86_pmu_stop(struct perf_event *event, int flags)
940 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
941 struct hw_perf_event *hwc = &event->hw;
943 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
944 x86_pmu.disable(event);
945 cpuc->events[hwc->idx] = NULL;
946 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
947 hwc->state |= PERF_HES_STOPPED;
950 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
952 * Drain the remaining delta count out of a event
953 * that we are disabling:
955 x86_perf_event_update(event);
956 hwc->state |= PERF_HES_UPTODATE;
960 static void x86_pmu_del(struct perf_event *event, int flags)
962 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
963 int i;
966 * If we're called during a txn, we don't need to do anything.
967 * The events never got scheduled and ->cancel_txn will truncate
968 * the event_list.
970 if (cpuc->group_flag & PERF_EVENT_TXN)
971 return;
973 x86_pmu_stop(event, PERF_EF_UPDATE);
975 for (i = 0; i < cpuc->n_events; i++) {
976 if (event == cpuc->event_list[i]) {
978 if (x86_pmu.put_event_constraints)
979 x86_pmu.put_event_constraints(cpuc, event);
981 while (++i < cpuc->n_events)
982 cpuc->event_list[i-1] = cpuc->event_list[i];
984 --cpuc->n_events;
985 break;
988 perf_event_update_userpage(event);
991 int x86_pmu_handle_irq(struct pt_regs *regs)
993 struct perf_sample_data data;
994 struct cpu_hw_events *cpuc;
995 struct perf_event *event;
996 int idx, handled = 0;
997 u64 val;
999 perf_sample_data_init(&data, 0);
1001 cpuc = &__get_cpu_var(cpu_hw_events);
1004 * Some chipsets need to unmask the LVTPC in a particular spot
1005 * inside the nmi handler. As a result, the unmasking was pushed
1006 * into all the nmi handlers.
1008 * This generic handler doesn't seem to have any issues where the
1009 * unmasking occurs so it was left at the top.
1011 apic_write(APIC_LVTPC, APIC_DM_NMI);
1013 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
1014 if (!test_bit(idx, cpuc->active_mask)) {
1016 * Though we deactivated the counter some cpus
1017 * might still deliver spurious interrupts still
1018 * in flight. Catch them:
1020 if (__test_and_clear_bit(idx, cpuc->running))
1021 handled++;
1022 continue;
1025 event = cpuc->events[idx];
1027 val = x86_perf_event_update(event);
1028 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
1029 continue;
1032 * event overflow
1034 handled++;
1035 data.period = event->hw.last_period;
1037 if (!x86_perf_event_set_period(event))
1038 continue;
1040 if (perf_event_overflow(event, &data, regs))
1041 x86_pmu_stop(event, 0);
1044 if (handled)
1045 inc_irq_stat(apic_perf_irqs);
1047 return handled;
1050 void perf_events_lapic_init(void)
1052 if (!x86_pmu.apic || !x86_pmu_initialized())
1053 return;
1056 * Always use NMI for PMU
1058 apic_write(APIC_LVTPC, APIC_DM_NMI);
1061 static int __kprobes
1062 perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
1064 if (!atomic_read(&active_events))
1065 return NMI_DONE;
1067 return x86_pmu.handle_irq(regs);
1070 struct event_constraint emptyconstraint;
1071 struct event_constraint unconstrained;
1073 static int __cpuinit
1074 x86_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
1076 unsigned int cpu = (long)hcpu;
1077 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1078 int ret = NOTIFY_OK;
1080 switch (action & ~CPU_TASKS_FROZEN) {
1081 case CPU_UP_PREPARE:
1082 cpuc->kfree_on_online = NULL;
1083 if (x86_pmu.cpu_prepare)
1084 ret = x86_pmu.cpu_prepare(cpu);
1085 break;
1087 case CPU_STARTING:
1088 if (x86_pmu.cpu_starting)
1089 x86_pmu.cpu_starting(cpu);
1090 break;
1092 case CPU_ONLINE:
1093 kfree(cpuc->kfree_on_online);
1094 break;
1096 case CPU_DYING:
1097 if (x86_pmu.cpu_dying)
1098 x86_pmu.cpu_dying(cpu);
1099 break;
1101 case CPU_UP_CANCELED:
1102 case CPU_DEAD:
1103 if (x86_pmu.cpu_dead)
1104 x86_pmu.cpu_dead(cpu);
1105 break;
1107 default:
1108 break;
1111 return ret;
1114 static void __init pmu_check_apic(void)
1116 if (cpu_has_apic)
1117 return;
1119 x86_pmu.apic = 0;
1120 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1121 pr_info("no hardware sampling interrupt available.\n");
1124 static int __init init_hw_perf_events(void)
1126 struct event_constraint *c;
1127 int err;
1129 pr_info("Performance Events: ");
1131 switch (boot_cpu_data.x86_vendor) {
1132 case X86_VENDOR_INTEL:
1133 err = intel_pmu_init();
1134 break;
1135 case X86_VENDOR_AMD:
1136 err = amd_pmu_init();
1137 break;
1138 default:
1139 return 0;
1141 if (err != 0) {
1142 pr_cont("no PMU driver, software events only.\n");
1143 return 0;
1146 pmu_check_apic();
1148 /* sanity check that the hardware exists or is emulated */
1149 if (!check_hw_exists())
1150 return 0;
1152 pr_cont("%s PMU driver.\n", x86_pmu.name);
1154 if (x86_pmu.quirks)
1155 x86_pmu.quirks();
1157 if (x86_pmu.num_counters > X86_PMC_MAX_GENERIC) {
1158 WARN(1, KERN_ERR "hw perf events %d > max(%d), clipping!",
1159 x86_pmu.num_counters, X86_PMC_MAX_GENERIC);
1160 x86_pmu.num_counters = X86_PMC_MAX_GENERIC;
1162 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
1164 if (x86_pmu.num_counters_fixed > X86_PMC_MAX_FIXED) {
1165 WARN(1, KERN_ERR "hw perf events fixed %d > max(%d), clipping!",
1166 x86_pmu.num_counters_fixed, X86_PMC_MAX_FIXED);
1167 x86_pmu.num_counters_fixed = X86_PMC_MAX_FIXED;
1170 x86_pmu.intel_ctrl |=
1171 ((1LL << x86_pmu.num_counters_fixed)-1) << X86_PMC_IDX_FIXED;
1173 perf_events_lapic_init();
1174 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1176 unconstrained = (struct event_constraint)
1177 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
1178 0, x86_pmu.num_counters);
1180 if (x86_pmu.event_constraints) {
1181 for_each_event_constraint(c, x86_pmu.event_constraints) {
1182 if (c->cmask != X86_RAW_EVENT_MASK)
1183 continue;
1185 c->idxmsk64 |= (1ULL << x86_pmu.num_counters) - 1;
1186 c->weight += x86_pmu.num_counters;
1190 pr_info("... version: %d\n", x86_pmu.version);
1191 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1192 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1193 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
1194 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
1195 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
1196 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
1198 perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1199 perf_cpu_notifier(x86_pmu_notifier);
1201 return 0;
1203 early_initcall(init_hw_perf_events);
1205 static inline void x86_pmu_read(struct perf_event *event)
1207 x86_perf_event_update(event);
1211 * Start group events scheduling transaction
1212 * Set the flag to make pmu::enable() not perform the
1213 * schedulability test, it will be performed at commit time
1215 static void x86_pmu_start_txn(struct pmu *pmu)
1217 perf_pmu_disable(pmu);
1218 __this_cpu_or(cpu_hw_events.group_flag, PERF_EVENT_TXN);
1219 __this_cpu_write(cpu_hw_events.n_txn, 0);
1223 * Stop group events scheduling transaction
1224 * Clear the flag and pmu::enable() will perform the
1225 * schedulability test.
1227 static void x86_pmu_cancel_txn(struct pmu *pmu)
1229 __this_cpu_and(cpu_hw_events.group_flag, ~PERF_EVENT_TXN);
1231 * Truncate the collected events.
1233 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1234 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
1235 perf_pmu_enable(pmu);
1239 * Commit group events scheduling transaction
1240 * Perform the group schedulability test as a whole
1241 * Return 0 if success
1243 static int x86_pmu_commit_txn(struct pmu *pmu)
1245 struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1246 int assign[X86_PMC_IDX_MAX];
1247 int n, ret;
1249 n = cpuc->n_events;
1251 if (!x86_pmu_initialized())
1252 return -EAGAIN;
1254 ret = x86_pmu.schedule_events(cpuc, n, assign);
1255 if (ret)
1256 return ret;
1259 * copy new assignment, now we know it is possible
1260 * will be used by hw_perf_enable()
1262 memcpy(cpuc->assign, assign, n*sizeof(int));
1264 cpuc->group_flag &= ~PERF_EVENT_TXN;
1265 perf_pmu_enable(pmu);
1266 return 0;
1269 * a fake_cpuc is used to validate event groups. Due to
1270 * the extra reg logic, we need to also allocate a fake
1271 * per_core and per_cpu structure. Otherwise, group events
1272 * using extra reg may conflict without the kernel being
1273 * able to catch this when the last event gets added to
1274 * the group.
1276 static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1278 kfree(cpuc->shared_regs);
1279 kfree(cpuc);
1282 static struct cpu_hw_events *allocate_fake_cpuc(void)
1284 struct cpu_hw_events *cpuc;
1285 int cpu = raw_smp_processor_id();
1287 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
1288 if (!cpuc)
1289 return ERR_PTR(-ENOMEM);
1291 /* only needed, if we have extra_regs */
1292 if (x86_pmu.extra_regs) {
1293 cpuc->shared_regs = allocate_shared_regs(cpu);
1294 if (!cpuc->shared_regs)
1295 goto error;
1297 return cpuc;
1298 error:
1299 free_fake_cpuc(cpuc);
1300 return ERR_PTR(-ENOMEM);
1304 * validate that we can schedule this event
1306 static int validate_event(struct perf_event *event)
1308 struct cpu_hw_events *fake_cpuc;
1309 struct event_constraint *c;
1310 int ret = 0;
1312 fake_cpuc = allocate_fake_cpuc();
1313 if (IS_ERR(fake_cpuc))
1314 return PTR_ERR(fake_cpuc);
1316 c = x86_pmu.get_event_constraints(fake_cpuc, event);
1318 if (!c || !c->weight)
1319 ret = -ENOSPC;
1321 if (x86_pmu.put_event_constraints)
1322 x86_pmu.put_event_constraints(fake_cpuc, event);
1324 free_fake_cpuc(fake_cpuc);
1326 return ret;
1330 * validate a single event group
1332 * validation include:
1333 * - check events are compatible which each other
1334 * - events do not compete for the same counter
1335 * - number of events <= number of counters
1337 * validation ensures the group can be loaded onto the
1338 * PMU if it was the only group available.
1340 static int validate_group(struct perf_event *event)
1342 struct perf_event *leader = event->group_leader;
1343 struct cpu_hw_events *fake_cpuc;
1344 int ret = -ENOSPC, n;
1346 fake_cpuc = allocate_fake_cpuc();
1347 if (IS_ERR(fake_cpuc))
1348 return PTR_ERR(fake_cpuc);
1350 * the event is not yet connected with its
1351 * siblings therefore we must first collect
1352 * existing siblings, then add the new event
1353 * before we can simulate the scheduling
1355 n = collect_events(fake_cpuc, leader, true);
1356 if (n < 0)
1357 goto out;
1359 fake_cpuc->n_events = n;
1360 n = collect_events(fake_cpuc, event, false);
1361 if (n < 0)
1362 goto out;
1364 fake_cpuc->n_events = n;
1366 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
1368 out:
1369 free_fake_cpuc(fake_cpuc);
1370 return ret;
1373 static int x86_pmu_event_init(struct perf_event *event)
1375 struct pmu *tmp;
1376 int err;
1378 switch (event->attr.type) {
1379 case PERF_TYPE_RAW:
1380 case PERF_TYPE_HARDWARE:
1381 case PERF_TYPE_HW_CACHE:
1382 break;
1384 default:
1385 return -ENOENT;
1388 err = __x86_pmu_event_init(event);
1389 if (!err) {
1391 * we temporarily connect event to its pmu
1392 * such that validate_group() can classify
1393 * it as an x86 event using is_x86_event()
1395 tmp = event->pmu;
1396 event->pmu = &pmu;
1398 if (event->group_leader != event)
1399 err = validate_group(event);
1400 else
1401 err = validate_event(event);
1403 event->pmu = tmp;
1405 if (err) {
1406 if (event->destroy)
1407 event->destroy(event);
1410 return err;
1413 static struct pmu pmu = {
1414 .pmu_enable = x86_pmu_enable,
1415 .pmu_disable = x86_pmu_disable,
1417 .event_init = x86_pmu_event_init,
1419 .add = x86_pmu_add,
1420 .del = x86_pmu_del,
1421 .start = x86_pmu_start,
1422 .stop = x86_pmu_stop,
1423 .read = x86_pmu_read,
1425 .start_txn = x86_pmu_start_txn,
1426 .cancel_txn = x86_pmu_cancel_txn,
1427 .commit_txn = x86_pmu_commit_txn,
1431 * callchain support
1434 static int backtrace_stack(void *data, char *name)
1436 return 0;
1439 static void backtrace_address(void *data, unsigned long addr, int reliable)
1441 struct perf_callchain_entry *entry = data;
1443 perf_callchain_store(entry, addr);
1446 static const struct stacktrace_ops backtrace_ops = {
1447 .stack = backtrace_stack,
1448 .address = backtrace_address,
1449 .walk_stack = print_context_stack_bp,
1452 void
1453 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
1455 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1456 /* TODO: We don't support guest os callchain now */
1457 return;
1460 perf_callchain_store(entry, regs->ip);
1462 dump_trace(NULL, regs, NULL, 0, &backtrace_ops, entry);
1465 #ifdef CONFIG_COMPAT
1466 static inline int
1467 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1469 /* 32-bit process in 64-bit kernel. */
1470 struct stack_frame_ia32 frame;
1471 const void __user *fp;
1473 if (!test_thread_flag(TIF_IA32))
1474 return 0;
1476 fp = compat_ptr(regs->bp);
1477 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1478 unsigned long bytes;
1479 frame.next_frame = 0;
1480 frame.return_address = 0;
1482 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1483 if (bytes != sizeof(frame))
1484 break;
1486 if (fp < compat_ptr(regs->sp))
1487 break;
1489 perf_callchain_store(entry, frame.return_address);
1490 fp = compat_ptr(frame.next_frame);
1492 return 1;
1494 #else
1495 static inline int
1496 perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry *entry)
1498 return 0;
1500 #endif
1502 void
1503 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1505 struct stack_frame frame;
1506 const void __user *fp;
1508 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1509 /* TODO: We don't support guest os callchain now */
1510 return;
1513 fp = (void __user *)regs->bp;
1515 perf_callchain_store(entry, regs->ip);
1517 if (!current->mm)
1518 return;
1520 if (perf_callchain_user32(regs, entry))
1521 return;
1523 while (entry->nr < PERF_MAX_STACK_DEPTH) {
1524 unsigned long bytes;
1525 frame.next_frame = NULL;
1526 frame.return_address = 0;
1528 bytes = copy_from_user_nmi(&frame, fp, sizeof(frame));
1529 if (bytes != sizeof(frame))
1530 break;
1532 if ((unsigned long)fp < regs->sp)
1533 break;
1535 perf_callchain_store(entry, frame.return_address);
1536 fp = frame.next_frame;
1540 unsigned long perf_instruction_pointer(struct pt_regs *regs)
1542 unsigned long ip;
1544 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
1545 ip = perf_guest_cbs->get_guest_ip();
1546 else
1547 ip = instruction_pointer(regs);
1549 return ip;
1552 unsigned long perf_misc_flags(struct pt_regs *regs)
1554 int misc = 0;
1556 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
1557 if (perf_guest_cbs->is_user_mode())
1558 misc |= PERF_RECORD_MISC_GUEST_USER;
1559 else
1560 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
1561 } else {
1562 if (user_mode(regs))
1563 misc |= PERF_RECORD_MISC_USER;
1564 else
1565 misc |= PERF_RECORD_MISC_KERNEL;
1568 if (regs->flags & PERF_EFLAGS_EXACT)
1569 misc |= PERF_RECORD_MISC_EXACT_IP;
1571 return misc;