2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
8 * This file is part of the SPL, Solaris Porting Layer.
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 * Solaris Porting Layer (SPL) Generic Implementation.
26 #include <sys/isa_defs.h>
27 #include <sys/sysmacros.h>
28 #include <sys/systeminfo.h>
29 #include <sys/vmsystm.h>
31 #include <sys/kmem_cache.h>
33 #include <sys/mutex.h>
34 #include <sys/rwlock.h>
35 #include <sys/taskq.h>
38 #include <sys/debug.h>
40 #include <sys/kstat.h>
42 #include <sys/sunddi.h>
43 #include <linux/ctype.h>
45 #include <sys/random.h>
46 #include <sys/string.h>
47 #include <linux/kmod.h>
48 #include <linux/mod_compat.h>
50 #include <sys/vnode.h>
52 #include <linux/mod_compat.h>
54 unsigned long spl_hostid
= 0;
55 EXPORT_SYMBOL(spl_hostid
);
58 module_param(spl_hostid
, ulong
, 0644);
59 MODULE_PARM_DESC(spl_hostid
, "The system hostid.");
65 * xoshiro256++ 1.0 PRNG by David Blackman and Sebastiano Vigna
67 * "Scrambled Linear Pseudorandom Number Generators∗"
68 * https://vigna.di.unimi.it/ftp/papers/ScrambledLinear.pdf
70 * random_get_pseudo_bytes() is an API function on Illumos whose sole purpose
71 * is to provide bytes containing random numbers. It is mapped to /dev/urandom
72 * on Illumos, which uses a "FIPS 186-2 algorithm". No user of the SPL's
73 * random_get_pseudo_bytes() needs bytes that are of cryptographic quality, so
74 * we can implement it using a fast PRNG that we seed using Linux' actual
75 * equivalent to random_get_pseudo_bytes(). We do this by providing each CPU
76 * with an independent seed so that all calls to random_get_pseudo_bytes() are
77 * free of atomic instructions.
79 * A consequence of using a fast PRNG is that using random_get_pseudo_bytes()
80 * to generate words larger than 256 bits will paradoxically be limited to
81 * `2^256 - 1` possibilities. This is because we have a sequence of `2^256 - 1`
82 * 256-bit words and selecting the first will implicitly select the second. If
83 * a caller finds this behavior undesirable, random_get_bytes() should be used
86 * XXX: Linux interrupt handlers that trigger within the critical section
87 * formed by `s[3] = xp[3];` and `xp[0] = s[0];` and call this function will
88 * see the same numbers. Nothing in the code currently calls this in an
89 * interrupt handler, so this is considered to be okay. If that becomes a
90 * problem, we could create a set of per-cpu variables for interrupt handlers
91 * and use them when in_interrupt() from linux/preempt_mask.h evaluates to
94 static void __percpu
*spl_pseudo_entropy
;
97 * rotl()/spl_rand_next()/spl_rand_jump() are copied from the following CC-0
100 * https://prng.di.unimi.it/xoshiro256plusplus.c
103 static inline uint64_t rotl(const uint64_t x
, int k
)
105 return ((x
<< k
) | (x
>> (64 - k
)));
108 static inline uint64_t
109 spl_rand_next(uint64_t *s
)
111 const uint64_t result
= rotl(s
[0] + s
[3], 23) + s
[0];
113 const uint64_t t
= s
[1] << 17;
122 s
[3] = rotl(s
[3], 45);
128 spl_rand_jump(uint64_t *s
)
130 static const uint64_t JUMP
[] = { 0x180ec6d33cfd0aba,
131 0xd5a61266f0c9392c, 0xa9582618e03fc9aa, 0x39abdc4529b1661c };
138 for (i
= 0; i
< sizeof (JUMP
) / sizeof (*JUMP
); i
++)
139 for (b
= 0; b
< 64; b
++) {
140 if (JUMP
[i
] & 1ULL << b
) {
146 (void) spl_rand_next(s
);
156 random_get_pseudo_bytes(uint8_t *ptr
, size_t len
)
162 xp
= get_cpu_ptr(spl_pseudo_entropy
);
172 uint8_t byte
[sizeof (uint64_t)];
174 int i
= MIN(len
, sizeof (uint64_t));
177 entropy
.ui64
= spl_rand_next(s
);
180 * xoshiro256++ has low entropy lower bytes, so we copy the
181 * higher order bytes first.
184 #ifdef _ZFS_BIG_ENDIAN
185 *ptr
++ = entropy
.byte
[i
];
187 *ptr
++ = entropy
.byte
[7 - i
];
196 put_cpu_ptr(spl_pseudo_entropy
);
202 EXPORT_SYMBOL(random_get_pseudo_bytes
);
204 #if BITS_PER_LONG == 32
207 * Support 64/64 => 64 division on a 32-bit platform. While the kernel
208 * provides a div64_u64() function for this we do not use it because the
209 * implementation is flawed. There are cases which return incorrect
210 * results as late as linux-2.6.35. Until this is fixed upstream the
211 * spl must provide its own implementation.
213 * This implementation is a slightly modified version of the algorithm
214 * proposed by the book 'Hacker's Delight'. The original source can be
215 * found here and is available for use without restriction.
217 * http://www.hackersdelight.org/HDcode/newCode/divDouble.c
221 * Calculate number of leading of zeros for a 64-bit value.
231 if (x
<= 0x00000000FFFFFFFFULL
) { n
= n
+ 32; x
= x
<< 32; }
232 if (x
<= 0x0000FFFFFFFFFFFFULL
) { n
= n
+ 16; x
= x
<< 16; }
233 if (x
<= 0x00FFFFFFFFFFFFFFULL
) { n
= n
+ 8; x
= x
<< 8; }
234 if (x
<= 0x0FFFFFFFFFFFFFFFULL
) { n
= n
+ 4; x
= x
<< 4; }
235 if (x
<= 0x3FFFFFFFFFFFFFFFULL
) { n
= n
+ 2; x
= x
<< 2; }
236 if (x
<= 0x7FFFFFFFFFFFFFFFULL
) { n
= n
+ 1; }
242 * Newer kernels have a div_u64() function but we define our own
243 * to simplify portability between kernel versions.
245 static inline uint64_t
246 __div_u64(uint64_t u
, uint32_t v
)
253 * Turn off missing prototypes warning for these functions. They are
254 * replacements for libgcc-provided functions and will never be called
257 #if defined(__GNUC__) && !defined(__clang__)
258 #pragma GCC diagnostic push
259 #pragma GCC diagnostic ignored "-Wmissing-prototypes"
263 * Implementation of 64-bit unsigned division for 32-bit machines.
265 * First the procedure takes care of the case in which the divisor is a
266 * 32-bit quantity. There are two subcases: (1) If the left half of the
267 * dividend is less than the divisor, one execution of do_div() is all that
268 * is required (overflow is not possible). (2) Otherwise it does two
269 * divisions, using the grade school method.
272 __udivdi3(uint64_t u
, uint64_t v
)
274 uint64_t u0
, u1
, v1
, q0
, q1
, k
;
277 if (v
>> 32 == 0) { // If v < 2**32:
278 if (u
>> 32 < v
) { // If u/v cannot overflow,
279 return (__div_u64(u
, v
)); // just do one division.
280 } else { // If u/v would overflow:
281 u1
= u
>> 32; // Break u into two halves.
283 q1
= __div_u64(u1
, v
); // First quotient digit.
284 k
= u1
- q1
* v
; // First remainder, < v.
286 q0
= __div_u64(u0
, v
); // Seconds quotient digit.
287 return ((q1
<< 32) + q0
);
289 } else { // If v >= 2**32:
290 n
= nlz64(v
); // 0 <= n <= 31.
291 v1
= (v
<< n
) >> 32; // Normalize divisor, MSB is 1.
292 u1
= u
>> 1; // To ensure no overflow.
293 q1
= __div_u64(u1
, v1
); // Get quotient from
294 q0
= (q1
<< n
) >> 31; // Undo normalization and
295 // division of u by 2.
296 if (q0
!= 0) // Make q0 correct or
297 q0
= q0
- 1; // too small by 1.
298 if ((u
- q0
* v
) >= v
)
299 q0
= q0
+ 1; // Now q0 is correct.
304 EXPORT_SYMBOL(__udivdi3
);
308 #define abs64(x) ({ uint64_t t = (x) >> 63; ((x) ^ t) - t; })
312 * Implementation of 64-bit signed division for 32-bit machines.
315 __divdi3(int64_t u
, int64_t v
)
318 q
= __udivdi3(abs64(u
), abs64(v
));
319 t
= (u
^ v
) >> 63; // If u, v have different
320 return ((q
^ t
) - t
); // signs, negate q.
322 EXPORT_SYMBOL(__divdi3
);
325 * Implementation of 64-bit unsigned modulo for 32-bit machines.
328 __umoddi3(uint64_t dividend
, uint64_t divisor
)
330 return (dividend
- (divisor
* __udivdi3(dividend
, divisor
)));
332 EXPORT_SYMBOL(__umoddi3
);
334 /* 64-bit signed modulo for 32-bit machines. */
336 __moddi3(int64_t n
, int64_t d
)
339 boolean_t nn
= B_FALSE
;
350 return (nn
? -q
: q
);
352 EXPORT_SYMBOL(__moddi3
);
355 * Implementation of 64-bit unsigned division/modulo for 32-bit machines.
358 __udivmoddi4(uint64_t n
, uint64_t d
, uint64_t *r
)
360 uint64_t q
= __udivdi3(n
, d
);
365 EXPORT_SYMBOL(__udivmoddi4
);
368 * Implementation of 64-bit signed division/modulo for 32-bit machines.
371 __divmoddi4(int64_t n
, int64_t d
, int64_t *r
)
374 boolean_t nn
= B_FALSE
;
375 boolean_t nd
= B_FALSE
;
385 q
= __udivmoddi4(n
, d
, (uint64_t *)&rr
);
395 EXPORT_SYMBOL(__divmoddi4
);
397 #if defined(__arm) || defined(__arm__)
399 * Implementation of 64-bit (un)signed division for 32-bit arm machines.
401 * Run-time ABI for the ARM Architecture (page 20). A pair of (unsigned)
402 * long longs is returned in {{r0, r1}, {r2,r3}}, the quotient in {r0, r1},
403 * and the remainder in {r2, r3}. The return type is specifically left
404 * set to 'void' to ensure the compiler does not overwrite these registers
405 * during the return. All results are in registers as per ABI
408 __aeabi_uldivmod(uint64_t u
, uint64_t v
)
413 res
= __udivdi3(u
, v
);
414 mod
= __umoddi3(u
, v
);
416 register uint32_t r0
asm("r0") = (res
& 0xFFFFFFFF);
417 register uint32_t r1
asm("r1") = (res
>> 32);
418 register uint32_t r2
asm("r2") = (mod
& 0xFFFFFFFF);
419 register uint32_t r3
asm("r3") = (mod
>> 32);
422 : "+r"(r0
), "+r"(r1
), "+r"(r2
), "+r"(r3
) /* output */
423 : "r"(r0
), "r"(r1
), "r"(r2
), "r"(r3
)); /* input */
428 EXPORT_SYMBOL(__aeabi_uldivmod
);
431 __aeabi_ldivmod(int64_t u
, int64_t v
)
436 res
= __divdi3(u
, v
);
437 mod
= __umoddi3(u
, v
);
439 register uint32_t r0
asm("r0") = (res
& 0xFFFFFFFF);
440 register uint32_t r1
asm("r1") = (res
>> 32);
441 register uint32_t r2
asm("r2") = (mod
& 0xFFFFFFFF);
442 register uint32_t r3
asm("r3") = (mod
>> 32);
445 : "+r"(r0
), "+r"(r1
), "+r"(r2
), "+r"(r3
) /* output */
446 : "r"(r0
), "r"(r1
), "r"(r2
), "r"(r3
)); /* input */
451 EXPORT_SYMBOL(__aeabi_ldivmod
);
452 #endif /* __arm || __arm__ */
454 #if defined(__GNUC__) && !defined(__clang__)
455 #pragma GCC diagnostic pop
458 #endif /* BITS_PER_LONG */
461 * NOTE: The strtoxx behavior is solely based on my reading of the Solaris
462 * ddi_strtol(9F) man page. I have not verified the behavior of these
463 * functions against their Solaris counterparts. It is possible that I
464 * may have misinterpreted the man page or the man page is incorrect.
466 int ddi_strtol(const char *, char **, int, long *);
467 int ddi_strtoull(const char *, char **, int, unsigned long long *);
468 int ddi_strtoll(const char *, char **, int, long long *);
470 #define define_ddi_strtox(type, valtype) \
471 int ddi_strto##type(const char *str, char **endptr, \
472 int base, valtype *result) \
474 valtype last_value, value = 0; \
475 char *ptr = (char *)str; \
476 int digit, minus = 0; \
478 while (strchr(" \t\n\r\f", *ptr)) \
481 if (strlen(ptr) == 0) \
493 /* Auto-detect base based on prefix */ \
495 if (str[0] == '0') { \
496 if (tolower(str[1]) == 'x' && isxdigit(str[2])) { \
497 base = 16; /* hex */ \
499 } else if (str[1] >= '0' && str[1] < '8') { \
500 base = 8; /* octal */ \
506 base = 10; /* decimal */ \
512 digit = *ptr - '0'; \
513 else if (isalpha(*ptr)) \
514 digit = tolower(*ptr) - 'a' + 10; \
521 last_value = value; \
522 value = value * base + digit; \
523 if (last_value > value) /* Overflow */ \
529 *result = minus ? -value : value; \
537 define_ddi_strtox(l, long)
538 define_ddi_strtox(ull
, unsigned long long)
539 define_ddi_strtox(ll
, long long)
541 EXPORT_SYMBOL(ddi_strtol
);
542 EXPORT_SYMBOL(ddi_strtoll
);
543 EXPORT_SYMBOL(ddi_strtoull
);
546 ddi_copyin(const void *from
, void *to
, size_t len
, int flags
)
548 /* Fake ioctl() issued by kernel, 'from' is a kernel address */
549 if (flags
& FKIOCTL
) {
550 memcpy(to
, from
, len
);
554 return (copyin(from
, to
, len
));
556 EXPORT_SYMBOL(ddi_copyin
);
558 #define define_spl_param(type, fmt) \
560 spl_param_get_##type(char *buf, zfs_kernel_param_t *kp) \
562 return (scnprintf(buf, PAGE_SIZE, fmt "\n", \
563 *(type *)kp->arg)); \
566 spl_param_set_##type(const char *buf, zfs_kernel_param_t *kp) \
568 return (kstrto##type(buf, 0, (type *)kp->arg)); \
570 const struct kernel_param_ops spl_param_ops_##type = { \
571 .set = spl_param_set_##type, \
572 .get = spl_param_get_##type, \
574 EXPORT_SYMBOL(spl_param_get_##type); \
575 EXPORT_SYMBOL(spl_param_set_##type); \
576 EXPORT_SYMBOL(spl_param_ops_##type);
578 define_spl_param(s64
, "%lld")
579 define_spl_param(u64
, "%llu")
582 * Post a uevent to userspace whenever a new vdev adds to the pool. It is
583 * necessary to sync blkid information with udev, which zed daemon uses
584 * during device hotplug to identify the vdev.
587 spl_signal_kobj_evt(struct block_device
*bdev
)
589 #if defined(HAVE_BDEV_KOBJ) || defined(HAVE_PART_TO_DEV)
590 #ifdef HAVE_BDEV_KOBJ
591 struct kobject
*disk_kobj
= bdev_kobj(bdev
);
593 struct kobject
*disk_kobj
= &part_to_dev(bdev
->bd_part
)->kobj
;
596 int ret
= kobject_uevent(disk_kobj
, KOBJ_CHANGE
);
598 pr_warn("ZFS: Sending event '%d' to kobject: '%s'"
599 " (%p): failed(ret:%d)\n", KOBJ_CHANGE
,
600 kobject_name(disk_kobj
), disk_kobj
, ret
);
605 * This is encountered if neither bdev_kobj() nor part_to_dev() is available
606 * in the kernel - likely due to an API change that needs to be chased down.
608 #error "Unsupported kernel: unable to get struct kobj from bdev"
611 EXPORT_SYMBOL(spl_signal_kobj_evt
);
614 ddi_copyout(const void *from
, void *to
, size_t len
, int flags
)
616 /* Fake ioctl() issued by kernel, 'from' is a kernel address */
617 if (flags
& FKIOCTL
) {
618 memcpy(to
, from
, len
);
622 return (copyout(from
, to
, len
));
624 EXPORT_SYMBOL(ddi_copyout
);
627 spl_getattr(struct file
*filp
, struct kstat
*stat
)
634 rc
= vfs_getattr(&filp
->f_path
, stat
, STATX_BASIC_STATS
,
635 AT_STATX_SYNC_AS_STAT
);
643 * Read the unique system identifier from the /etc/hostid file.
645 * The behavior of /usr/bin/hostid on Linux systems with the
646 * regular eglibc and coreutils is:
648 * 1. Generate the value if the /etc/hostid file does not exist
649 * or if the /etc/hostid file is less than four bytes in size.
651 * 2. If the /etc/hostid file is at least 4 bytes, then return
652 * the first four bytes [0..3] in native endian order.
654 * 3. Always ignore bytes [4..] if they exist in the file.
656 * Only the first four bytes are significant, even on systems that
657 * have a 64-bit word size.
661 * eglibc: sysdeps/unix/sysv/linux/gethostid.c
662 * coreutils: src/hostid.c
666 * The /etc/hostid file on Solaris is a text file that often reads:
671 * Directly copying this file to Linux results in a constant
672 * hostid of 4f442023 because the default comment constitutes
673 * the first four bytes of the file.
677 static char *spl_hostid_path
= HW_HOSTID_PATH
;
678 module_param(spl_hostid_path
, charp
, 0444);
679 MODULE_PARM_DESC(spl_hostid_path
, "The system hostid file (/etc/hostid)");
682 hostid_read(uint32_t *hostid
)
691 filp
= filp_open(spl_hostid_path
, 0, 0);
696 error
= spl_getattr(filp
, &stat
);
702 // cppcheck-suppress sizeofwithnumericparameter
703 if (size
< sizeof (HW_HOSTID_MASK
)) {
710 * Read directly into the variable like eglibc does.
711 * Short reads are okay; native behavior is preserved.
713 error
= kernel_read(filp
, &value
, sizeof (value
), &off
);
719 /* Mask down to 32 bits like coreutils does. */
720 *hostid
= (value
& HW_HOSTID_MASK
);
727 * Return the system hostid. Preferentially use the spl_hostid module option
728 * when set, otherwise use the value in the /etc/hostid file.
731 zone_get_hostid(void *zone
)
735 ASSERT3P(zone
, ==, NULL
);
738 return ((uint32_t)(spl_hostid
& HW_HOSTID_MASK
));
740 if (hostid_read(&hostid
) == 0)
745 EXPORT_SYMBOL(zone_get_hostid
);
752 rc
= spl_kmem_init();
756 rc
= spl_vmem_init();
766 * We initialize the random number generator with 128 bits of entropy from the
767 * system random number generator. In the improbable case that we have a zero
768 * seed, we fallback to the system jiffies, unless it is also zero, in which
769 * situation we use a preprogrammed seed. We step forward by 2^64 iterations to
770 * initialize each of the per-cpu seeds so that the sequences generated on each
771 * CPU are guaranteed to never overlap in practice.
774 spl_random_init(void)
779 spl_pseudo_entropy
= __alloc_percpu(4 * sizeof (uint64_t),
782 if (!spl_pseudo_entropy
)
785 get_random_bytes(s
, sizeof (s
));
787 if (s
[0] == 0 && s
[1] == 0 && s
[2] == 0 && s
[3] == 0) {
794 (void) memcpy(s
, "improbable seed", 16);
796 printk("SPL: get_random_bytes() returned 0 "
797 "when generating random seed. Setting initial seed to "
798 "0x%016llx%016llx%016llx%016llx.\n", cpu_to_be64(s
[0]),
799 cpu_to_be64(s
[1]), cpu_to_be64(s
[2]), cpu_to_be64(s
[3]));
802 for_each_possible_cpu(i
) {
803 uint64_t *wordp
= per_cpu_ptr(spl_pseudo_entropy
, i
);
817 spl_random_fini(void)
819 free_percpu(spl_pseudo_entropy
);
834 if ((rc
= spl_random_init()))
837 if ((rc
= spl_kvmem_init()))
840 if ((rc
= spl_tsd_init()))
843 if ((rc
= spl_proc_init()))
846 if ((rc
= spl_kstat_init()))
849 if ((rc
= spl_taskq_init()))
852 if ((rc
= spl_kmem_cache_init()))
855 if ((rc
= spl_zlib_init()))
858 if ((rc
= spl_zone_init()))
866 spl_kmem_cache_fini();
888 spl_kmem_cache_fini();
897 module_init(spl_init
);
898 module_exit(spl_fini
);
900 MODULE_DESCRIPTION("Solaris Porting Layer");
901 MODULE_AUTHOR(ZFS_META_AUTHOR
);
902 MODULE_LICENSE("GPL");
903 MODULE_VERSION(ZFS_META_VERSION
"-" ZFS_META_RELEASE
);