CI: Automate some GitHub PR status labels manipulations
[zfs.git] / module / os / linux / spl / spl-kmem-cache.c
blob7e806bd5699c9c8fa8c06254fec7b23ff3a6cca7
1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
8 * This file is part of the SPL, Solaris Porting Layer.
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
24 #define SPL_KMEM_CACHE_IMPLEMENTING
26 #include <sys/kmem.h>
27 #include <sys/kmem_cache.h>
28 #include <sys/taskq.h>
29 #include <sys/timer.h>
30 #include <sys/vmem.h>
31 #include <sys/wait.h>
32 #include <sys/string.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/prefetch.h>
38 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
39 * with smp_mb__{before,after}_atomic() because they were redundant. This is
40 * only used inside our SLAB allocator, so we implement an internal wrapper
41 * here to give us smp_mb__{before,after}_atomic() on older kernels.
43 #ifndef smp_mb__before_atomic
44 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
45 #endif
47 #ifndef smp_mb__after_atomic
48 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
49 #endif
51 /* BEGIN CSTYLED */
53 * Cache magazines are an optimization designed to minimize the cost of
54 * allocating memory. They do this by keeping a per-cpu cache of recently
55 * freed objects, which can then be reallocated without taking a lock. This
56 * can improve performance on highly contended caches. However, because
57 * objects in magazines will prevent otherwise empty slabs from being
58 * immediately released this may not be ideal for low memory machines.
60 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
61 * magazine size. When this value is set to 0 the magazine size will be
62 * automatically determined based on the object size. Otherwise magazines
63 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
64 * may never be entirely disabled in this implementation.
66 static unsigned int spl_kmem_cache_magazine_size = 0;
67 module_param(spl_kmem_cache_magazine_size, uint, 0444);
68 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
69 "Default magazine size (2-256), set automatically (0)");
71 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
72 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
73 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
75 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
76 module_param(spl_kmem_cache_max_size, uint, 0644);
77 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
80 * For small objects the Linux slab allocator should be used to make the most
81 * efficient use of the memory. However, large objects are not supported by
82 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
83 * of 16K was determined to be optimal for architectures using 4K pages and
84 * to also work well on architecutres using larger 64K page sizes.
86 static unsigned int spl_kmem_cache_slab_limit =
87 SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE;
88 module_param(spl_kmem_cache_slab_limit, uint, 0644);
89 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
90 "Objects less than N bytes use the Linux slab");
93 * The number of threads available to allocate new slabs for caches. This
94 * should not need to be tuned but it is available for performance analysis.
96 static unsigned int spl_kmem_cache_kmem_threads = 4;
97 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
98 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
99 "Number of spl_kmem_cache threads");
100 /* END CSTYLED */
103 * Slab allocation interfaces
105 * While the Linux slab implementation was inspired by the Solaris
106 * implementation I cannot use it to emulate the Solaris APIs. I
107 * require two features which are not provided by the Linux slab.
109 * 1) Constructors AND destructors. Recent versions of the Linux
110 * kernel have removed support for destructors. This is a deal
111 * breaker for the SPL which contains particularly expensive
112 * initializers for mutex's, condition variables, etc. We also
113 * require a minimal level of cleanup for these data types unlike
114 * many Linux data types which do need to be explicitly destroyed.
116 * 2) Virtual address space backed slab. Callers of the Solaris slab
117 * expect it to work well for both small are very large allocations.
118 * Because of memory fragmentation the Linux slab which is backed
119 * by kmalloc'ed memory performs very badly when confronted with
120 * large numbers of large allocations. Basing the slab on the
121 * virtual address space removes the need for contiguous pages
122 * and greatly improve performance for large allocations.
124 * For these reasons, the SPL has its own slab implementation with
125 * the needed features. It is not as highly optimized as either the
126 * Solaris or Linux slabs, but it should get me most of what is
127 * needed until it can be optimized or obsoleted by another approach.
129 * One serious concern I do have about this method is the relatively
130 * small virtual address space on 32bit arches. This will seriously
131 * constrain the size of the slab caches and their performance.
134 struct list_head spl_kmem_cache_list; /* List of caches */
135 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
136 static taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */
138 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
140 static void *
141 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
143 gfp_t lflags = kmem_flags_convert(flags);
144 void *ptr;
146 if (skc->skc_flags & KMC_RECLAIMABLE)
147 lflags |= __GFP_RECLAIMABLE;
148 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
150 /* Resulting allocated memory will be page aligned */
151 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
153 return (ptr);
156 static void
157 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
159 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
162 * The Linux direct reclaim path uses this out of band value to
163 * determine if forward progress is being made. Normally this is
164 * incremented by kmem_freepages() which is part of the various
165 * Linux slab implementations. However, since we are using none
166 * of that infrastructure we are responsible for incrementing it.
168 if (current->reclaim_state)
169 #ifdef HAVE_RECLAIM_STATE_RECLAIMED
170 current->reclaim_state->reclaimed += size >> PAGE_SHIFT;
171 #else
172 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
173 #endif
174 vfree(ptr);
178 * Required space for each aligned sks.
180 static inline uint32_t
181 spl_sks_size(spl_kmem_cache_t *skc)
183 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
184 skc->skc_obj_align, uint32_t));
188 * Required space for each aligned object.
190 static inline uint32_t
191 spl_obj_size(spl_kmem_cache_t *skc)
193 uint32_t align = skc->skc_obj_align;
195 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
196 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
199 uint64_t
200 spl_kmem_cache_inuse(kmem_cache_t *cache)
202 return (cache->skc_obj_total);
204 EXPORT_SYMBOL(spl_kmem_cache_inuse);
206 uint64_t
207 spl_kmem_cache_entry_size(kmem_cache_t *cache)
209 return (cache->skc_obj_size);
211 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
214 * Lookup the spl_kmem_object_t for an object given that object.
216 static inline spl_kmem_obj_t *
217 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
219 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
220 skc->skc_obj_align, uint32_t));
224 * It's important that we pack the spl_kmem_obj_t structure and the
225 * actual objects in to one large address space to minimize the number
226 * of calls to the allocator. It is far better to do a few large
227 * allocations and then subdivide it ourselves. Now which allocator
228 * we use requires balancing a few trade offs.
230 * For small objects we use kmem_alloc() because as long as you are
231 * only requesting a small number of pages (ideally just one) its cheap.
232 * However, when you start requesting multiple pages with kmem_alloc()
233 * it gets increasingly expensive since it requires contiguous pages.
234 * For this reason we shift to vmem_alloc() for slabs of large objects
235 * which removes the need for contiguous pages. We do not use
236 * vmem_alloc() in all cases because there is significant locking
237 * overhead in __get_vm_area_node(). This function takes a single
238 * global lock when acquiring an available virtual address range which
239 * serializes all vmem_alloc()'s for all slab caches. Using slightly
240 * different allocation functions for small and large objects should
241 * give us the best of both worlds.
243 * +------------------------+
244 * | spl_kmem_slab_t --+-+ |
245 * | skc_obj_size <-+ | |
246 * | spl_kmem_obj_t | |
247 * | skc_obj_size <---+ |
248 * | spl_kmem_obj_t | |
249 * | ... v |
250 * +------------------------+
252 static spl_kmem_slab_t *
253 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
255 spl_kmem_slab_t *sks;
256 void *base;
257 uint32_t obj_size;
259 base = kv_alloc(skc, skc->skc_slab_size, flags);
260 if (base == NULL)
261 return (NULL);
263 sks = (spl_kmem_slab_t *)base;
264 sks->sks_magic = SKS_MAGIC;
265 sks->sks_objs = skc->skc_slab_objs;
266 sks->sks_age = jiffies;
267 sks->sks_cache = skc;
268 INIT_LIST_HEAD(&sks->sks_list);
269 INIT_LIST_HEAD(&sks->sks_free_list);
270 sks->sks_ref = 0;
271 obj_size = spl_obj_size(skc);
273 for (int i = 0; i < sks->sks_objs; i++) {
274 void *obj = base + spl_sks_size(skc) + (i * obj_size);
276 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
277 spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
278 sko->sko_addr = obj;
279 sko->sko_magic = SKO_MAGIC;
280 sko->sko_slab = sks;
281 INIT_LIST_HEAD(&sko->sko_list);
282 list_add_tail(&sko->sko_list, &sks->sks_free_list);
285 return (sks);
289 * Remove a slab from complete or partial list, it must be called with
290 * the 'skc->skc_lock' held but the actual free must be performed
291 * outside the lock to prevent deadlocking on vmem addresses.
293 static void
294 spl_slab_free(spl_kmem_slab_t *sks,
295 struct list_head *sks_list, struct list_head *sko_list)
297 spl_kmem_cache_t *skc;
299 ASSERT(sks->sks_magic == SKS_MAGIC);
300 ASSERT(sks->sks_ref == 0);
302 skc = sks->sks_cache;
303 ASSERT(skc->skc_magic == SKC_MAGIC);
306 * Update slab/objects counters in the cache, then remove the
307 * slab from the skc->skc_partial_list. Finally add the slab
308 * and all its objects in to the private work lists where the
309 * destructors will be called and the memory freed to the system.
311 skc->skc_obj_total -= sks->sks_objs;
312 skc->skc_slab_total--;
313 list_del(&sks->sks_list);
314 list_add(&sks->sks_list, sks_list);
315 list_splice_init(&sks->sks_free_list, sko_list);
319 * Reclaim empty slabs at the end of the partial list.
321 static void
322 spl_slab_reclaim(spl_kmem_cache_t *skc)
324 spl_kmem_slab_t *sks = NULL, *m = NULL;
325 spl_kmem_obj_t *sko = NULL, *n = NULL;
326 LIST_HEAD(sks_list);
327 LIST_HEAD(sko_list);
330 * Empty slabs and objects must be moved to a private list so they
331 * can be safely freed outside the spin lock. All empty slabs are
332 * at the end of skc->skc_partial_list, therefore once a non-empty
333 * slab is found we can stop scanning.
335 spin_lock(&skc->skc_lock);
336 list_for_each_entry_safe_reverse(sks, m,
337 &skc->skc_partial_list, sks_list) {
339 if (sks->sks_ref > 0)
340 break;
342 spl_slab_free(sks, &sks_list, &sko_list);
344 spin_unlock(&skc->skc_lock);
347 * The following two loops ensure all the object destructors are run,
348 * and the slabs themselves are freed. This is all done outside the
349 * skc->skc_lock since this allows the destructor to sleep, and
350 * allows us to perform a conditional reschedule when a freeing a
351 * large number of objects and slabs back to the system.
354 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
355 ASSERT(sko->sko_magic == SKO_MAGIC);
358 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
359 ASSERT(sks->sks_magic == SKS_MAGIC);
360 kv_free(skc, sks, skc->skc_slab_size);
364 static spl_kmem_emergency_t *
365 spl_emergency_search(struct rb_root *root, void *obj)
367 struct rb_node *node = root->rb_node;
368 spl_kmem_emergency_t *ske;
369 unsigned long address = (unsigned long)obj;
371 while (node) {
372 ske = container_of(node, spl_kmem_emergency_t, ske_node);
374 if (address < ske->ske_obj)
375 node = node->rb_left;
376 else if (address > ske->ske_obj)
377 node = node->rb_right;
378 else
379 return (ske);
382 return (NULL);
385 static int
386 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
388 struct rb_node **new = &(root->rb_node), *parent = NULL;
389 spl_kmem_emergency_t *ske_tmp;
390 unsigned long address = ske->ske_obj;
392 while (*new) {
393 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
395 parent = *new;
396 if (address < ske_tmp->ske_obj)
397 new = &((*new)->rb_left);
398 else if (address > ske_tmp->ske_obj)
399 new = &((*new)->rb_right);
400 else
401 return (0);
404 rb_link_node(&ske->ske_node, parent, new);
405 rb_insert_color(&ske->ske_node, root);
407 return (1);
411 * Allocate a single emergency object and track it in a red black tree.
413 static int
414 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
416 gfp_t lflags = kmem_flags_convert(flags);
417 spl_kmem_emergency_t *ske;
418 int order = get_order(skc->skc_obj_size);
419 int empty;
421 /* Last chance use a partial slab if one now exists */
422 spin_lock(&skc->skc_lock);
423 empty = list_empty(&skc->skc_partial_list);
424 spin_unlock(&skc->skc_lock);
425 if (!empty)
426 return (-EEXIST);
428 if (skc->skc_flags & KMC_RECLAIMABLE)
429 lflags |= __GFP_RECLAIMABLE;
430 ske = kmalloc(sizeof (*ske), lflags);
431 if (ske == NULL)
432 return (-ENOMEM);
434 ske->ske_obj = __get_free_pages(lflags, order);
435 if (ske->ske_obj == 0) {
436 kfree(ske);
437 return (-ENOMEM);
440 spin_lock(&skc->skc_lock);
441 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
442 if (likely(empty)) {
443 skc->skc_obj_total++;
444 skc->skc_obj_emergency++;
445 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
446 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
448 spin_unlock(&skc->skc_lock);
450 if (unlikely(!empty)) {
451 free_pages(ske->ske_obj, order);
452 kfree(ske);
453 return (-EINVAL);
456 *obj = (void *)ske->ske_obj;
458 return (0);
462 * Locate the passed object in the red black tree and free it.
464 static int
465 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
467 spl_kmem_emergency_t *ske;
468 int order = get_order(skc->skc_obj_size);
470 spin_lock(&skc->skc_lock);
471 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
472 if (ske) {
473 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
474 skc->skc_obj_emergency--;
475 skc->skc_obj_total--;
477 spin_unlock(&skc->skc_lock);
479 if (ske == NULL)
480 return (-ENOENT);
482 free_pages(ske->ske_obj, order);
483 kfree(ske);
485 return (0);
489 * Release objects from the per-cpu magazine back to their slab. The flush
490 * argument contains the max number of entries to remove from the magazine.
492 static void
493 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
495 spin_lock(&skc->skc_lock);
497 ASSERT(skc->skc_magic == SKC_MAGIC);
498 ASSERT(skm->skm_magic == SKM_MAGIC);
500 int count = MIN(flush, skm->skm_avail);
501 for (int i = 0; i < count; i++)
502 spl_cache_shrink(skc, skm->skm_objs[i]);
504 skm->skm_avail -= count;
505 memmove(skm->skm_objs, &(skm->skm_objs[count]),
506 sizeof (void *) * skm->skm_avail);
508 spin_unlock(&skc->skc_lock);
512 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
513 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
514 * for very small objects we may end up with more than this so as not
515 * to waste space in the minimal allocation of a single page.
517 static int
518 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
520 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
522 sks_size = spl_sks_size(skc);
523 obj_size = spl_obj_size(skc);
524 max_size = (spl_kmem_cache_max_size * 1024 * 1024);
525 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
527 if (tgt_size <= max_size) {
528 tgt_objs = (tgt_size - sks_size) / obj_size;
529 } else {
530 tgt_objs = (max_size - sks_size) / obj_size;
531 tgt_size = (tgt_objs * obj_size) + sks_size;
534 if (tgt_objs == 0)
535 return (-ENOSPC);
537 *objs = tgt_objs;
538 *size = tgt_size;
540 return (0);
544 * Make a guess at reasonable per-cpu magazine size based on the size of
545 * each object and the cost of caching N of them in each magazine. Long
546 * term this should really adapt based on an observed usage heuristic.
548 static int
549 spl_magazine_size(spl_kmem_cache_t *skc)
551 uint32_t obj_size = spl_obj_size(skc);
552 int size;
554 if (spl_kmem_cache_magazine_size > 0)
555 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
557 /* Per-magazine sizes below assume a 4Kib page size */
558 if (obj_size > (PAGE_SIZE * 256))
559 size = 4; /* Minimum 4Mib per-magazine */
560 else if (obj_size > (PAGE_SIZE * 32))
561 size = 16; /* Minimum 2Mib per-magazine */
562 else if (obj_size > (PAGE_SIZE))
563 size = 64; /* Minimum 256Kib per-magazine */
564 else if (obj_size > (PAGE_SIZE / 4))
565 size = 128; /* Minimum 128Kib per-magazine */
566 else
567 size = 256;
569 return (size);
573 * Allocate a per-cpu magazine to associate with a specific core.
575 static spl_kmem_magazine_t *
576 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
578 spl_kmem_magazine_t *skm;
579 int size = sizeof (spl_kmem_magazine_t) +
580 sizeof (void *) * skc->skc_mag_size;
582 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
583 if (skm) {
584 skm->skm_magic = SKM_MAGIC;
585 skm->skm_avail = 0;
586 skm->skm_size = skc->skc_mag_size;
587 skm->skm_refill = skc->skc_mag_refill;
588 skm->skm_cache = skc;
589 skm->skm_cpu = cpu;
592 return (skm);
596 * Free a per-cpu magazine associated with a specific core.
598 static void
599 spl_magazine_free(spl_kmem_magazine_t *skm)
601 ASSERT(skm->skm_magic == SKM_MAGIC);
602 ASSERT(skm->skm_avail == 0);
603 kfree(skm);
607 * Create all pre-cpu magazines of reasonable sizes.
609 static int
610 spl_magazine_create(spl_kmem_cache_t *skc)
612 int i = 0;
614 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
616 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
617 num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
618 skc->skc_mag_size = spl_magazine_size(skc);
619 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
621 for_each_possible_cpu(i) {
622 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
623 if (!skc->skc_mag[i]) {
624 for (i--; i >= 0; i--)
625 spl_magazine_free(skc->skc_mag[i]);
627 kfree(skc->skc_mag);
628 return (-ENOMEM);
632 return (0);
636 * Destroy all pre-cpu magazines.
638 static void
639 spl_magazine_destroy(spl_kmem_cache_t *skc)
641 spl_kmem_magazine_t *skm;
642 int i = 0;
644 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
646 for_each_possible_cpu(i) {
647 skm = skc->skc_mag[i];
648 spl_cache_flush(skc, skm, skm->skm_avail);
649 spl_magazine_free(skm);
652 kfree(skc->skc_mag);
656 * Create a object cache based on the following arguments:
657 * name cache name
658 * size cache object size
659 * align cache object alignment
660 * ctor cache object constructor
661 * dtor cache object destructor
662 * reclaim cache object reclaim
663 * priv cache private data for ctor/dtor/reclaim
664 * vmp unused must be NULL
665 * flags
666 * KMC_KVMEM Force kvmem backed SPL cache
667 * KMC_SLAB Force Linux slab backed cache
668 * KMC_NODEBUG Disable debugging (unsupported)
669 * KMC_RECLAIMABLE Memory can be freed under pressure
671 spl_kmem_cache_t *
672 spl_kmem_cache_create(const char *name, size_t size, size_t align,
673 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
674 void *priv, void *vmp, int flags)
676 gfp_t lflags = kmem_flags_convert(KM_SLEEP);
677 spl_kmem_cache_t *skc;
678 int rc;
681 * Unsupported flags
683 ASSERT(vmp == NULL);
684 ASSERT(reclaim == NULL);
686 might_sleep();
688 skc = kzalloc(sizeof (*skc), lflags);
689 if (skc == NULL)
690 return (NULL);
692 skc->skc_magic = SKC_MAGIC;
693 skc->skc_name_size = strlen(name) + 1;
694 skc->skc_name = kmalloc(skc->skc_name_size, lflags);
695 if (skc->skc_name == NULL) {
696 kfree(skc);
697 return (NULL);
699 strlcpy(skc->skc_name, name, skc->skc_name_size);
701 skc->skc_ctor = ctor;
702 skc->skc_dtor = dtor;
703 skc->skc_private = priv;
704 skc->skc_vmp = vmp;
705 skc->skc_linux_cache = NULL;
706 skc->skc_flags = flags;
707 skc->skc_obj_size = size;
708 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
709 atomic_set(&skc->skc_ref, 0);
711 INIT_LIST_HEAD(&skc->skc_list);
712 INIT_LIST_HEAD(&skc->skc_complete_list);
713 INIT_LIST_HEAD(&skc->skc_partial_list);
714 skc->skc_emergency_tree = RB_ROOT;
715 spin_lock_init(&skc->skc_lock);
716 init_waitqueue_head(&skc->skc_waitq);
717 skc->skc_slab_fail = 0;
718 skc->skc_slab_create = 0;
719 skc->skc_slab_destroy = 0;
720 skc->skc_slab_total = 0;
721 skc->skc_slab_alloc = 0;
722 skc->skc_slab_max = 0;
723 skc->skc_obj_total = 0;
724 skc->skc_obj_alloc = 0;
725 skc->skc_obj_max = 0;
726 skc->skc_obj_deadlock = 0;
727 skc->skc_obj_emergency = 0;
728 skc->skc_obj_emergency_max = 0;
730 rc = percpu_counter_init(&skc->skc_linux_alloc, 0, GFP_KERNEL);
731 if (rc != 0) {
732 kfree(skc);
733 return (NULL);
737 * Verify the requested alignment restriction is sane.
739 if (align) {
740 VERIFY(ISP2(align));
741 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
742 VERIFY3U(align, <=, PAGE_SIZE);
743 skc->skc_obj_align = align;
747 * When no specific type of slab is requested (kmem, vmem, or
748 * linuxslab) then select a cache type based on the object size
749 * and default tunables.
751 if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
752 if (spl_kmem_cache_slab_limit &&
753 size <= (size_t)spl_kmem_cache_slab_limit) {
755 * Objects smaller than spl_kmem_cache_slab_limit can
756 * use the Linux slab for better space-efficiency.
758 skc->skc_flags |= KMC_SLAB;
759 } else {
761 * All other objects are considered large and are
762 * placed on kvmem backed slabs.
764 skc->skc_flags |= KMC_KVMEM;
769 * Given the type of slab allocate the required resources.
771 if (skc->skc_flags & KMC_KVMEM) {
772 rc = spl_slab_size(skc,
773 &skc->skc_slab_objs, &skc->skc_slab_size);
774 if (rc)
775 goto out;
777 rc = spl_magazine_create(skc);
778 if (rc)
779 goto out;
780 } else {
781 unsigned long slabflags = 0;
783 if (size > spl_kmem_cache_slab_limit)
784 goto out;
786 if (skc->skc_flags & KMC_RECLAIMABLE)
787 slabflags |= SLAB_RECLAIM_ACCOUNT;
789 skc->skc_linux_cache = kmem_cache_create_usercopy(
790 skc->skc_name, size, align, slabflags, 0, size, NULL);
791 if (skc->skc_linux_cache == NULL)
792 goto out;
795 down_write(&spl_kmem_cache_sem);
796 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
797 up_write(&spl_kmem_cache_sem);
799 return (skc);
800 out:
801 kfree(skc->skc_name);
802 percpu_counter_destroy(&skc->skc_linux_alloc);
803 kfree(skc);
804 return (NULL);
806 EXPORT_SYMBOL(spl_kmem_cache_create);
809 * Register a move callback for cache defragmentation.
810 * XXX: Unimplemented but harmless to stub out for now.
812 void
813 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
814 kmem_cbrc_t (move)(void *, void *, size_t, void *))
816 ASSERT(move != NULL);
818 EXPORT_SYMBOL(spl_kmem_cache_set_move);
821 * Destroy a cache and all objects associated with the cache.
823 void
824 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
826 DECLARE_WAIT_QUEUE_HEAD(wq);
827 taskqid_t id;
829 ASSERT(skc->skc_magic == SKC_MAGIC);
830 ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
832 down_write(&spl_kmem_cache_sem);
833 list_del_init(&skc->skc_list);
834 up_write(&spl_kmem_cache_sem);
836 /* Cancel any and wait for any pending delayed tasks */
837 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
839 spin_lock(&skc->skc_lock);
840 id = skc->skc_taskqid;
841 spin_unlock(&skc->skc_lock);
843 taskq_cancel_id(spl_kmem_cache_taskq, id);
846 * Wait until all current callers complete, this is mainly
847 * to catch the case where a low memory situation triggers a
848 * cache reaping action which races with this destroy.
850 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
852 if (skc->skc_flags & KMC_KVMEM) {
853 spl_magazine_destroy(skc);
854 spl_slab_reclaim(skc);
855 } else {
856 ASSERT(skc->skc_flags & KMC_SLAB);
857 kmem_cache_destroy(skc->skc_linux_cache);
860 spin_lock(&skc->skc_lock);
863 * Validate there are no objects in use and free all the
864 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
866 ASSERT3U(skc->skc_slab_alloc, ==, 0);
867 ASSERT3U(skc->skc_obj_alloc, ==, 0);
868 ASSERT3U(skc->skc_slab_total, ==, 0);
869 ASSERT3U(skc->skc_obj_total, ==, 0);
870 ASSERT3U(skc->skc_obj_emergency, ==, 0);
871 ASSERT(list_empty(&skc->skc_complete_list));
873 ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
874 percpu_counter_destroy(&skc->skc_linux_alloc);
876 spin_unlock(&skc->skc_lock);
878 kfree(skc->skc_name);
879 kfree(skc);
881 EXPORT_SYMBOL(spl_kmem_cache_destroy);
884 * Allocate an object from a slab attached to the cache. This is used to
885 * repopulate the per-cpu magazine caches in batches when they run low.
887 static void *
888 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
890 spl_kmem_obj_t *sko;
892 ASSERT(skc->skc_magic == SKC_MAGIC);
893 ASSERT(sks->sks_magic == SKS_MAGIC);
895 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
896 ASSERT(sko->sko_magic == SKO_MAGIC);
897 ASSERT(sko->sko_addr != NULL);
899 /* Remove from sks_free_list */
900 list_del_init(&sko->sko_list);
902 sks->sks_age = jiffies;
903 sks->sks_ref++;
904 skc->skc_obj_alloc++;
906 /* Track max obj usage statistics */
907 if (skc->skc_obj_alloc > skc->skc_obj_max)
908 skc->skc_obj_max = skc->skc_obj_alloc;
910 /* Track max slab usage statistics */
911 if (sks->sks_ref == 1) {
912 skc->skc_slab_alloc++;
914 if (skc->skc_slab_alloc > skc->skc_slab_max)
915 skc->skc_slab_max = skc->skc_slab_alloc;
918 return (sko->sko_addr);
922 * Generic slab allocation function to run by the global work queues.
923 * It is responsible for allocating a new slab, linking it in to the list
924 * of partial slabs, and then waking any waiters.
926 static int
927 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
929 spl_kmem_slab_t *sks;
931 fstrans_cookie_t cookie = spl_fstrans_mark();
932 sks = spl_slab_alloc(skc, flags);
933 spl_fstrans_unmark(cookie);
935 spin_lock(&skc->skc_lock);
936 if (sks) {
937 skc->skc_slab_total++;
938 skc->skc_obj_total += sks->sks_objs;
939 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
941 smp_mb__before_atomic();
942 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
943 smp_mb__after_atomic();
945 spin_unlock(&skc->skc_lock);
947 return (sks == NULL ? -ENOMEM : 0);
950 static void
951 spl_cache_grow_work(void *data)
953 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
954 spl_kmem_cache_t *skc = ska->ska_cache;
956 int error = __spl_cache_grow(skc, ska->ska_flags);
958 atomic_dec(&skc->skc_ref);
959 smp_mb__before_atomic();
960 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
961 smp_mb__after_atomic();
962 if (error == 0)
963 wake_up_all(&skc->skc_waitq);
965 kfree(ska);
969 * Returns non-zero when a new slab should be available.
971 static int
972 spl_cache_grow_wait(spl_kmem_cache_t *skc)
974 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
978 * No available objects on any slabs, create a new slab. Note that this
979 * functionality is disabled for KMC_SLAB caches which are backed by the
980 * Linux slab.
982 static int
983 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
985 int remaining, rc = 0;
987 ASSERT0(flags & ~KM_PUBLIC_MASK);
988 ASSERT(skc->skc_magic == SKC_MAGIC);
989 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
991 *obj = NULL;
994 * Since we can't sleep attempt an emergency allocation to satisfy
995 * the request. The only alterative is to fail the allocation but
996 * it's preferable try. The use of KM_NOSLEEP is expected to be rare.
998 if (flags & KM_NOSLEEP)
999 return (spl_emergency_alloc(skc, flags, obj));
1001 might_sleep();
1004 * Before allocating a new slab wait for any reaping to complete and
1005 * then return so the local magazine can be rechecked for new objects.
1007 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1008 rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1009 TASK_UNINTERRUPTIBLE);
1010 return (rc ? rc : -EAGAIN);
1014 * Note: It would be nice to reduce the overhead of context switch
1015 * and improve NUMA locality, by trying to allocate a new slab in the
1016 * current process context with KM_NOSLEEP flag.
1018 * However, this can't be applied to vmem/kvmem due to a bug that
1019 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1023 * This is handled by dispatching a work request to the global work
1024 * queue. This allows us to asynchronously allocate a new slab while
1025 * retaining the ability to safely fall back to a smaller synchronous
1026 * allocations to ensure forward progress is always maintained.
1028 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1029 spl_kmem_alloc_t *ska;
1031 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1032 if (ska == NULL) {
1033 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1034 smp_mb__after_atomic();
1035 wake_up_all(&skc->skc_waitq);
1036 return (-ENOMEM);
1039 atomic_inc(&skc->skc_ref);
1040 ska->ska_cache = skc;
1041 ska->ska_flags = flags;
1042 taskq_init_ent(&ska->ska_tqe);
1043 taskq_dispatch_ent(spl_kmem_cache_taskq,
1044 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1048 * The goal here is to only detect the rare case where a virtual slab
1049 * allocation has deadlocked. We must be careful to minimize the use
1050 * of emergency objects which are more expensive to track. Therefore,
1051 * we set a very long timeout for the asynchronous allocation and if
1052 * the timeout is reached the cache is flagged as deadlocked. From
1053 * this point only new emergency objects will be allocated until the
1054 * asynchronous allocation completes and clears the deadlocked flag.
1056 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1057 rc = spl_emergency_alloc(skc, flags, obj);
1058 } else {
1059 remaining = wait_event_timeout(skc->skc_waitq,
1060 spl_cache_grow_wait(skc), HZ / 10);
1062 if (!remaining) {
1063 spin_lock(&skc->skc_lock);
1064 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1065 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1066 skc->skc_obj_deadlock++;
1068 spin_unlock(&skc->skc_lock);
1071 rc = -ENOMEM;
1074 return (rc);
1078 * Refill a per-cpu magazine with objects from the slabs for this cache.
1079 * Ideally the magazine can be repopulated using existing objects which have
1080 * been released, however if we are unable to locate enough free objects new
1081 * slabs of objects will be created. On success NULL is returned, otherwise
1082 * the address of a single emergency object is returned for use by the caller.
1084 static void *
1085 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1087 spl_kmem_slab_t *sks;
1088 int count = 0, rc, refill;
1089 void *obj = NULL;
1091 ASSERT(skc->skc_magic == SKC_MAGIC);
1092 ASSERT(skm->skm_magic == SKM_MAGIC);
1094 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1095 spin_lock(&skc->skc_lock);
1097 while (refill > 0) {
1098 /* No slabs available we may need to grow the cache */
1099 if (list_empty(&skc->skc_partial_list)) {
1100 spin_unlock(&skc->skc_lock);
1102 local_irq_enable();
1103 rc = spl_cache_grow(skc, flags, &obj);
1104 local_irq_disable();
1106 /* Emergency object for immediate use by caller */
1107 if (rc == 0 && obj != NULL)
1108 return (obj);
1110 if (rc)
1111 goto out;
1113 /* Rescheduled to different CPU skm is not local */
1114 if (skm != skc->skc_mag[smp_processor_id()])
1115 goto out;
1118 * Potentially rescheduled to the same CPU but
1119 * allocations may have occurred from this CPU while
1120 * we were sleeping so recalculate max refill.
1122 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1124 spin_lock(&skc->skc_lock);
1125 continue;
1128 /* Grab the next available slab */
1129 sks = list_entry((&skc->skc_partial_list)->next,
1130 spl_kmem_slab_t, sks_list);
1131 ASSERT(sks->sks_magic == SKS_MAGIC);
1132 ASSERT(sks->sks_ref < sks->sks_objs);
1133 ASSERT(!list_empty(&sks->sks_free_list));
1136 * Consume as many objects as needed to refill the requested
1137 * cache. We must also be careful not to overfill it.
1139 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1140 ++count) {
1141 ASSERT(skm->skm_avail < skm->skm_size);
1142 ASSERT(count < skm->skm_size);
1143 skm->skm_objs[skm->skm_avail++] =
1144 spl_cache_obj(skc, sks);
1147 /* Move slab to skc_complete_list when full */
1148 if (sks->sks_ref == sks->sks_objs) {
1149 list_del(&sks->sks_list);
1150 list_add(&sks->sks_list, &skc->skc_complete_list);
1154 spin_unlock(&skc->skc_lock);
1155 out:
1156 return (NULL);
1160 * Release an object back to the slab from which it came.
1162 static void
1163 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1165 spl_kmem_slab_t *sks = NULL;
1166 spl_kmem_obj_t *sko = NULL;
1168 ASSERT(skc->skc_magic == SKC_MAGIC);
1170 sko = spl_sko_from_obj(skc, obj);
1171 ASSERT(sko->sko_magic == SKO_MAGIC);
1172 sks = sko->sko_slab;
1173 ASSERT(sks->sks_magic == SKS_MAGIC);
1174 ASSERT(sks->sks_cache == skc);
1175 list_add(&sko->sko_list, &sks->sks_free_list);
1177 sks->sks_age = jiffies;
1178 sks->sks_ref--;
1179 skc->skc_obj_alloc--;
1182 * Move slab to skc_partial_list when no longer full. Slabs
1183 * are added to the head to keep the partial list is quasi-full
1184 * sorted order. Fuller at the head, emptier at the tail.
1186 if (sks->sks_ref == (sks->sks_objs - 1)) {
1187 list_del(&sks->sks_list);
1188 list_add(&sks->sks_list, &skc->skc_partial_list);
1192 * Move empty slabs to the end of the partial list so
1193 * they can be easily found and freed during reclamation.
1195 if (sks->sks_ref == 0) {
1196 list_del(&sks->sks_list);
1197 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1198 skc->skc_slab_alloc--;
1203 * Allocate an object from the per-cpu magazine, or if the magazine
1204 * is empty directly allocate from a slab and repopulate the magazine.
1206 void *
1207 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1209 spl_kmem_magazine_t *skm;
1210 void *obj = NULL;
1212 ASSERT0(flags & ~KM_PUBLIC_MASK);
1213 ASSERT(skc->skc_magic == SKC_MAGIC);
1214 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1217 * Allocate directly from a Linux slab. All optimizations are left
1218 * to the underlying cache we only need to guarantee that KM_SLEEP
1219 * callers will never fail.
1221 if (skc->skc_flags & KMC_SLAB) {
1222 struct kmem_cache *slc = skc->skc_linux_cache;
1223 do {
1224 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1225 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1227 if (obj != NULL) {
1229 * Even though we leave everything up to the
1230 * underlying cache we still keep track of
1231 * how many objects we've allocated in it for
1232 * better debuggability.
1234 percpu_counter_inc(&skc->skc_linux_alloc);
1236 goto ret;
1239 local_irq_disable();
1241 restart:
1243 * Safe to update per-cpu structure without lock, but
1244 * in the restart case we must be careful to reacquire
1245 * the local magazine since this may have changed
1246 * when we need to grow the cache.
1248 skm = skc->skc_mag[smp_processor_id()];
1249 ASSERT(skm->skm_magic == SKM_MAGIC);
1251 if (likely(skm->skm_avail)) {
1252 /* Object available in CPU cache, use it */
1253 obj = skm->skm_objs[--skm->skm_avail];
1254 } else {
1255 obj = spl_cache_refill(skc, skm, flags);
1256 if ((obj == NULL) && !(flags & KM_NOSLEEP))
1257 goto restart;
1259 local_irq_enable();
1260 goto ret;
1263 local_irq_enable();
1264 ASSERT(obj);
1265 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1267 ret:
1268 /* Pre-emptively migrate object to CPU L1 cache */
1269 if (obj) {
1270 if (obj && skc->skc_ctor)
1271 skc->skc_ctor(obj, skc->skc_private, flags);
1272 else
1273 prefetchw(obj);
1276 return (obj);
1278 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1281 * Free an object back to the local per-cpu magazine, there is no
1282 * guarantee that this is the same magazine the object was originally
1283 * allocated from. We may need to flush entire from the magazine
1284 * back to the slabs to make space.
1286 void
1287 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1289 spl_kmem_magazine_t *skm;
1290 unsigned long flags;
1291 int do_reclaim = 0;
1292 int do_emergency = 0;
1294 ASSERT(skc->skc_magic == SKC_MAGIC);
1295 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1298 * Run the destructor
1300 if (skc->skc_dtor)
1301 skc->skc_dtor(obj, skc->skc_private);
1304 * Free the object from the Linux underlying Linux slab.
1306 if (skc->skc_flags & KMC_SLAB) {
1307 kmem_cache_free(skc->skc_linux_cache, obj);
1308 percpu_counter_dec(&skc->skc_linux_alloc);
1309 return;
1313 * While a cache has outstanding emergency objects all freed objects
1314 * must be checked. However, since emergency objects will never use
1315 * a virtual address these objects can be safely excluded as an
1316 * optimization.
1318 if (!is_vmalloc_addr(obj)) {
1319 spin_lock(&skc->skc_lock);
1320 do_emergency = (skc->skc_obj_emergency > 0);
1321 spin_unlock(&skc->skc_lock);
1323 if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1324 return;
1327 local_irq_save(flags);
1330 * Safe to update per-cpu structure without lock, but
1331 * no remote memory allocation tracking is being performed
1332 * it is entirely possible to allocate an object from one
1333 * CPU cache and return it to another.
1335 skm = skc->skc_mag[smp_processor_id()];
1336 ASSERT(skm->skm_magic == SKM_MAGIC);
1339 * Per-CPU cache full, flush it to make space for this object,
1340 * this may result in an empty slab which can be reclaimed once
1341 * interrupts are re-enabled.
1343 if (unlikely(skm->skm_avail >= skm->skm_size)) {
1344 spl_cache_flush(skc, skm, skm->skm_refill);
1345 do_reclaim = 1;
1348 /* Available space in cache, use it */
1349 skm->skm_objs[skm->skm_avail++] = obj;
1351 local_irq_restore(flags);
1353 if (do_reclaim)
1354 spl_slab_reclaim(skc);
1356 EXPORT_SYMBOL(spl_kmem_cache_free);
1359 * Depending on how many and which objects are released it may simply
1360 * repopulate the local magazine which will then need to age-out. Objects
1361 * which cannot fit in the magazine will be released back to their slabs
1362 * which will also need to age out before being released. This is all just
1363 * best effort and we do not want to thrash creating and destroying slabs.
1365 void
1366 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1368 ASSERT(skc->skc_magic == SKC_MAGIC);
1369 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1371 if (skc->skc_flags & KMC_SLAB)
1372 return;
1374 atomic_inc(&skc->skc_ref);
1377 * Prevent concurrent cache reaping when contended.
1379 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1380 goto out;
1382 /* Reclaim from the magazine and free all now empty slabs. */
1383 unsigned long irq_flags;
1384 local_irq_save(irq_flags);
1385 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1386 spl_cache_flush(skc, skm, skm->skm_avail);
1387 local_irq_restore(irq_flags);
1389 spl_slab_reclaim(skc);
1390 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1391 smp_mb__after_atomic();
1392 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1393 out:
1394 atomic_dec(&skc->skc_ref);
1396 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1399 * This is stubbed out for code consistency with other platforms. There
1400 * is existing logic to prevent concurrent reaping so while this is ugly
1401 * it should do no harm.
1404 spl_kmem_cache_reap_active(void)
1406 return (0);
1408 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1411 * Reap all free slabs from all registered caches.
1413 void
1414 spl_kmem_reap(void)
1416 spl_kmem_cache_t *skc = NULL;
1418 down_read(&spl_kmem_cache_sem);
1419 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1420 spl_kmem_cache_reap_now(skc);
1422 up_read(&spl_kmem_cache_sem);
1424 EXPORT_SYMBOL(spl_kmem_reap);
1427 spl_kmem_cache_init(void)
1429 init_rwsem(&spl_kmem_cache_sem);
1430 INIT_LIST_HEAD(&spl_kmem_cache_list);
1431 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1432 spl_kmem_cache_kmem_threads, maxclsyspri,
1433 spl_kmem_cache_kmem_threads * 8, INT_MAX,
1434 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1436 if (spl_kmem_cache_taskq == NULL)
1437 return (-ENOMEM);
1439 return (0);
1442 void
1443 spl_kmem_cache_fini(void)
1445 taskq_destroy(spl_kmem_cache_taskq);