Fix O_APPEND for Linux 3.15 and older kernels
[zfs.git] / module / os / linux / zfs / zvol_os.c
blob4ebdf83316953d43d91b3f792e340c92d852381c
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 #include <sys/dataset_kstats.h>
26 #include <sys/dbuf.h>
27 #include <sys/dmu_traverse.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/zap.h>
32 #include <sys/zfeature.h>
33 #include <sys/zil_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zio.h>
36 #include <sys/zfs_rlock.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zvol.h>
39 #include <sys/zvol_impl.h>
41 #include <linux/blkdev_compat.h>
42 #include <linux/task_io_accounting_ops.h>
44 static unsigned int zvol_major = ZVOL_MAJOR;
45 static unsigned int zvol_request_sync = 0;
46 static unsigned int zvol_prefetch_bytes = (128 * 1024);
47 static unsigned long zvol_max_discard_blocks = 16384;
48 static unsigned int zvol_threads = 32;
50 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
51 static const unsigned int zvol_open_timeout_ms = 1000;
52 #endif
54 struct zvol_state_os {
55 struct gendisk *zvo_disk; /* generic disk */
56 struct request_queue *zvo_queue; /* request queue */
57 dev_t zvo_dev; /* device id */
60 taskq_t *zvol_taskq;
61 static struct ida zvol_ida;
63 typedef struct zv_request_stack {
64 zvol_state_t *zv;
65 struct bio *bio;
66 } zv_request_t;
68 typedef struct zv_request_task {
69 zv_request_t zvr;
70 taskq_ent_t ent;
71 } zv_request_task_t;
73 static zv_request_task_t *
74 zv_request_task_create(zv_request_t zvr)
76 zv_request_task_t *task;
77 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
78 taskq_init_ent(&task->ent);
79 task->zvr = zvr;
80 return (task);
83 static void
84 zv_request_task_free(zv_request_task_t *task)
86 kmem_free(task, sizeof (*task));
90 * Given a path, return TRUE if path is a ZVOL.
92 boolean_t
93 zvol_os_is_zvol(const char *path)
95 dev_t dev = 0;
97 if (vdev_lookup_bdev(path, &dev) != 0)
98 return (B_FALSE);
100 if (MAJOR(dev) == zvol_major)
101 return (B_TRUE);
103 return (B_FALSE);
106 static void
107 zvol_write(zv_request_t *zvr)
109 struct bio *bio = zvr->bio;
110 int error = 0;
111 zfs_uio_t uio;
113 zfs_uio_bvec_init(&uio, bio);
115 zvol_state_t *zv = zvr->zv;
116 ASSERT3P(zv, !=, NULL);
117 ASSERT3U(zv->zv_open_count, >, 0);
118 ASSERT3P(zv->zv_zilog, !=, NULL);
120 /* bio marked as FLUSH need to flush before write */
121 if (bio_is_flush(bio))
122 zil_commit(zv->zv_zilog, ZVOL_OBJ);
124 /* Some requests are just for flush and nothing else. */
125 if (uio.uio_resid == 0) {
126 rw_exit(&zv->zv_suspend_lock);
127 BIO_END_IO(bio, 0);
128 return;
131 struct request_queue *q = zv->zv_zso->zvo_queue;
132 struct gendisk *disk = zv->zv_zso->zvo_disk;
133 ssize_t start_resid = uio.uio_resid;
134 unsigned long start_time;
136 boolean_t acct = blk_queue_io_stat(q);
137 if (acct)
138 start_time = blk_generic_start_io_acct(q, disk, WRITE, bio);
140 boolean_t sync =
141 bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
143 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
144 uio.uio_loffset, uio.uio_resid, RL_WRITER);
146 uint64_t volsize = zv->zv_volsize;
147 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
148 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
149 uint64_t off = uio.uio_loffset;
150 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
152 if (bytes > volsize - off) /* don't write past the end */
153 bytes = volsize - off;
155 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
157 /* This will only fail for ENOSPC */
158 error = dmu_tx_assign(tx, TXG_WAIT);
159 if (error) {
160 dmu_tx_abort(tx);
161 break;
163 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
164 if (error == 0) {
165 zvol_log_write(zv, tx, off, bytes, sync);
167 dmu_tx_commit(tx);
169 if (error)
170 break;
172 zfs_rangelock_exit(lr);
174 int64_t nwritten = start_resid - uio.uio_resid;
175 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
176 task_io_account_write(nwritten);
178 if (sync)
179 zil_commit(zv->zv_zilog, ZVOL_OBJ);
181 rw_exit(&zv->zv_suspend_lock);
183 if (acct)
184 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
186 BIO_END_IO(bio, -error);
189 static void
190 zvol_write_task(void *arg)
192 zv_request_task_t *task = arg;
193 zvol_write(&task->zvr);
194 zv_request_task_free(task);
197 static void
198 zvol_discard(zv_request_t *zvr)
200 struct bio *bio = zvr->bio;
201 zvol_state_t *zv = zvr->zv;
202 uint64_t start = BIO_BI_SECTOR(bio) << 9;
203 uint64_t size = BIO_BI_SIZE(bio);
204 uint64_t end = start + size;
205 boolean_t sync;
206 int error = 0;
207 dmu_tx_t *tx;
209 ASSERT3P(zv, !=, NULL);
210 ASSERT3U(zv->zv_open_count, >, 0);
211 ASSERT3P(zv->zv_zilog, !=, NULL);
213 struct request_queue *q = zv->zv_zso->zvo_queue;
214 struct gendisk *disk = zv->zv_zso->zvo_disk;
215 unsigned long start_time;
217 boolean_t acct = blk_queue_io_stat(q);
218 if (acct)
219 start_time = blk_generic_start_io_acct(q, disk, WRITE, bio);
221 sync = bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
223 if (end > zv->zv_volsize) {
224 error = SET_ERROR(EIO);
225 goto unlock;
229 * Align the request to volume block boundaries when a secure erase is
230 * not required. This will prevent dnode_free_range() from zeroing out
231 * the unaligned parts which is slow (read-modify-write) and useless
232 * since we are not freeing any space by doing so.
234 if (!bio_is_secure_erase(bio)) {
235 start = P2ROUNDUP(start, zv->zv_volblocksize);
236 end = P2ALIGN(end, zv->zv_volblocksize);
237 size = end - start;
240 if (start >= end)
241 goto unlock;
243 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
244 start, size, RL_WRITER);
246 tx = dmu_tx_create(zv->zv_objset);
247 dmu_tx_mark_netfree(tx);
248 error = dmu_tx_assign(tx, TXG_WAIT);
249 if (error != 0) {
250 dmu_tx_abort(tx);
251 } else {
252 zvol_log_truncate(zv, tx, start, size, B_TRUE);
253 dmu_tx_commit(tx);
254 error = dmu_free_long_range(zv->zv_objset,
255 ZVOL_OBJ, start, size);
257 zfs_rangelock_exit(lr);
259 if (error == 0 && sync)
260 zil_commit(zv->zv_zilog, ZVOL_OBJ);
262 unlock:
263 rw_exit(&zv->zv_suspend_lock);
265 if (acct)
266 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
268 BIO_END_IO(bio, -error);
271 static void
272 zvol_discard_task(void *arg)
274 zv_request_task_t *task = arg;
275 zvol_discard(&task->zvr);
276 zv_request_task_free(task);
279 static void
280 zvol_read(zv_request_t *zvr)
282 struct bio *bio = zvr->bio;
283 int error = 0;
284 zfs_uio_t uio;
286 zfs_uio_bvec_init(&uio, bio);
288 zvol_state_t *zv = zvr->zv;
289 ASSERT3P(zv, !=, NULL);
290 ASSERT3U(zv->zv_open_count, >, 0);
292 struct request_queue *q = zv->zv_zso->zvo_queue;
293 struct gendisk *disk = zv->zv_zso->zvo_disk;
294 ssize_t start_resid = uio.uio_resid;
295 unsigned long start_time;
297 boolean_t acct = blk_queue_io_stat(q);
298 if (acct)
299 start_time = blk_generic_start_io_acct(q, disk, READ, bio);
301 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
302 uio.uio_loffset, uio.uio_resid, RL_READER);
304 uint64_t volsize = zv->zv_volsize;
305 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
306 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
308 /* don't read past the end */
309 if (bytes > volsize - uio.uio_loffset)
310 bytes = volsize - uio.uio_loffset;
312 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
313 if (error) {
314 /* convert checksum errors into IO errors */
315 if (error == ECKSUM)
316 error = SET_ERROR(EIO);
317 break;
320 zfs_rangelock_exit(lr);
322 int64_t nread = start_resid - uio.uio_resid;
323 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
324 task_io_account_read(nread);
326 rw_exit(&zv->zv_suspend_lock);
328 if (acct)
329 blk_generic_end_io_acct(q, disk, READ, bio, start_time);
331 BIO_END_IO(bio, -error);
334 static void
335 zvol_read_task(void *arg)
337 zv_request_task_t *task = arg;
338 zvol_read(&task->zvr);
339 zv_request_task_free(task);
342 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
343 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
344 static void
345 zvol_submit_bio(struct bio *bio)
346 #else
347 static blk_qc_t
348 zvol_submit_bio(struct bio *bio)
349 #endif
350 #else
351 static MAKE_REQUEST_FN_RET
352 zvol_request(struct request_queue *q, struct bio *bio)
353 #endif
355 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
356 #if defined(HAVE_BIO_BDEV_DISK)
357 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
358 #else
359 struct request_queue *q = bio->bi_disk->queue;
360 #endif
361 #endif
362 zvol_state_t *zv = q->queuedata;
363 fstrans_cookie_t cookie = spl_fstrans_mark();
364 uint64_t offset = BIO_BI_SECTOR(bio) << 9;
365 uint64_t size = BIO_BI_SIZE(bio);
366 int rw = bio_data_dir(bio);
368 if (bio_has_data(bio) && offset + size > zv->zv_volsize) {
369 printk(KERN_INFO
370 "%s: bad access: offset=%llu, size=%lu\n",
371 zv->zv_zso->zvo_disk->disk_name,
372 (long long unsigned)offset,
373 (long unsigned)size);
375 BIO_END_IO(bio, -SET_ERROR(EIO));
376 goto out;
379 zv_request_t zvr = {
380 .zv = zv,
381 .bio = bio,
383 zv_request_task_t *task;
385 if (rw == WRITE) {
386 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
387 BIO_END_IO(bio, -SET_ERROR(EROFS));
388 goto out;
392 * Prevents the zvol from being suspended, or the ZIL being
393 * concurrently opened. Will be released after the i/o
394 * completes.
396 rw_enter(&zv->zv_suspend_lock, RW_READER);
399 * Open a ZIL if this is the first time we have written to this
400 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
401 * than zv_state_lock so that we don't need to acquire an
402 * additional lock in this path.
404 if (zv->zv_zilog == NULL) {
405 rw_exit(&zv->zv_suspend_lock);
406 rw_enter(&zv->zv_suspend_lock, RW_WRITER);
407 if (zv->zv_zilog == NULL) {
408 zv->zv_zilog = zil_open(zv->zv_objset,
409 zvol_get_data);
410 zv->zv_flags |= ZVOL_WRITTEN_TO;
411 /* replay / destroy done in zvol_create_minor */
412 VERIFY0((zv->zv_zilog->zl_header->zh_flags &
413 ZIL_REPLAY_NEEDED));
415 rw_downgrade(&zv->zv_suspend_lock);
419 * We don't want this thread to be blocked waiting for i/o to
420 * complete, so we instead wait from a taskq callback. The
421 * i/o may be a ZIL write (via zil_commit()), or a read of an
422 * indirect block, or a read of a data block (if this is a
423 * partial-block write). We will indicate that the i/o is
424 * complete by calling BIO_END_IO() from the taskq callback.
426 * This design allows the calling thread to continue and
427 * initiate more concurrent operations by calling
428 * zvol_request() again. There are typically only a small
429 * number of threads available to call zvol_request() (e.g.
430 * one per iSCSI target), so keeping the latency of
431 * zvol_request() low is important for performance.
433 * The zvol_request_sync module parameter allows this
434 * behavior to be altered, for performance evaluation
435 * purposes. If the callback blocks, setting
436 * zvol_request_sync=1 will result in much worse performance.
438 * We can have up to zvol_threads concurrent i/o's being
439 * processed for all zvols on the system. This is typically
440 * a vast improvement over the zvol_request_sync=1 behavior
441 * of one i/o at a time per zvol. However, an even better
442 * design would be for zvol_request() to initiate the zio
443 * directly, and then be notified by the zio_done callback,
444 * which would call BIO_END_IO(). Unfortunately, the DMU/ZIL
445 * interfaces lack this functionality (they block waiting for
446 * the i/o to complete).
448 if (bio_is_discard(bio) || bio_is_secure_erase(bio)) {
449 if (zvol_request_sync) {
450 zvol_discard(&zvr);
451 } else {
452 task = zv_request_task_create(zvr);
453 taskq_dispatch_ent(zvol_taskq,
454 zvol_discard_task, task, 0, &task->ent);
456 } else {
457 if (zvol_request_sync) {
458 zvol_write(&zvr);
459 } else {
460 task = zv_request_task_create(zvr);
461 taskq_dispatch_ent(zvol_taskq,
462 zvol_write_task, task, 0, &task->ent);
465 } else {
467 * The SCST driver, and possibly others, may issue READ I/Os
468 * with a length of zero bytes. These empty I/Os contain no
469 * data and require no additional handling.
471 if (size == 0) {
472 BIO_END_IO(bio, 0);
473 goto out;
476 rw_enter(&zv->zv_suspend_lock, RW_READER);
478 /* See comment in WRITE case above. */
479 if (zvol_request_sync) {
480 zvol_read(&zvr);
481 } else {
482 task = zv_request_task_create(zvr);
483 taskq_dispatch_ent(zvol_taskq,
484 zvol_read_task, task, 0, &task->ent);
488 out:
489 spl_fstrans_unmark(cookie);
490 #if (defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
491 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)) && \
492 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
493 return (BLK_QC_T_NONE);
494 #endif
497 static int
498 zvol_open(struct block_device *bdev, fmode_t flag)
500 zvol_state_t *zv;
501 int error = 0;
502 boolean_t drop_suspend = B_FALSE;
503 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
504 hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
505 hrtime_t start = gethrtime();
507 retry:
508 #endif
509 rw_enter(&zvol_state_lock, RW_READER);
511 * Obtain a copy of private_data under the zvol_state_lock to make
512 * sure that either the result of zvol free code path setting
513 * bdev->bd_disk->private_data to NULL is observed, or zvol_os_free()
514 * is not called on this zv because of the positive zv_open_count.
516 zv = bdev->bd_disk->private_data;
517 if (zv == NULL) {
518 rw_exit(&zvol_state_lock);
519 return (SET_ERROR(-ENXIO));
522 mutex_enter(&zv->zv_state_lock);
524 * Make sure zvol is not suspended during first open
525 * (hold zv_suspend_lock) and respect proper lock acquisition
526 * ordering - zv_suspend_lock before zv_state_lock
528 if (zv->zv_open_count == 0) {
529 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
530 mutex_exit(&zv->zv_state_lock);
531 rw_enter(&zv->zv_suspend_lock, RW_READER);
532 mutex_enter(&zv->zv_state_lock);
533 /* check to see if zv_suspend_lock is needed */
534 if (zv->zv_open_count != 0) {
535 rw_exit(&zv->zv_suspend_lock);
536 } else {
537 drop_suspend = B_TRUE;
539 } else {
540 drop_suspend = B_TRUE;
543 rw_exit(&zvol_state_lock);
545 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
547 if (zv->zv_open_count == 0) {
548 boolean_t drop_namespace = B_FALSE;
550 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
553 * In all other call paths the spa_namespace_lock is taken
554 * before the bdev->bd_mutex lock. However, on open(2)
555 * the __blkdev_get() function calls fops->open() with the
556 * bdev->bd_mutex lock held. This can result in a deadlock
557 * when zvols from one pool are used as vdevs in another.
559 * To prevent a lock inversion deadlock we preemptively
560 * take the spa_namespace_lock. Normally the lock will not
561 * be contended and this is safe because spa_open_common()
562 * handles the case where the caller already holds the
563 * spa_namespace_lock.
565 * When the lock cannot be aquired after multiple retries
566 * this must be the vdev on zvol deadlock case and we have
567 * no choice but to return an error. For 5.12 and older
568 * kernels returning -ERESTARTSYS will result in the
569 * bdev->bd_mutex being dropped, then reacquired, and
570 * fops->open() being called again. This process can be
571 * repeated safely until both locks are acquired. For 5.13
572 * and newer the -ERESTARTSYS retry logic was removed from
573 * the kernel so the only option is to return the error for
574 * the caller to handle it.
576 if (!mutex_owned(&spa_namespace_lock)) {
577 if (!mutex_tryenter(&spa_namespace_lock)) {
578 mutex_exit(&zv->zv_state_lock);
579 rw_exit(&zv->zv_suspend_lock);
581 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
582 schedule();
583 return (SET_ERROR(-ERESTARTSYS));
584 #else
585 if ((gethrtime() - start) > timeout)
586 return (SET_ERROR(-ERESTARTSYS));
588 schedule_timeout(MSEC_TO_TICK(10));
589 goto retry;
590 #endif
591 } else {
592 drop_namespace = B_TRUE;
596 error = -zvol_first_open(zv, !(flag & FMODE_WRITE));
598 if (drop_namespace)
599 mutex_exit(&spa_namespace_lock);
602 if (error == 0) {
603 if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
604 if (zv->zv_open_count == 0)
605 zvol_last_close(zv);
607 error = SET_ERROR(-EROFS);
608 } else {
609 zv->zv_open_count++;
613 mutex_exit(&zv->zv_state_lock);
614 if (drop_suspend)
615 rw_exit(&zv->zv_suspend_lock);
617 if (error == 0)
618 zfs_check_media_change(bdev);
620 return (error);
623 static void
624 zvol_release(struct gendisk *disk, fmode_t mode)
626 zvol_state_t *zv;
627 boolean_t drop_suspend = B_TRUE;
629 rw_enter(&zvol_state_lock, RW_READER);
630 zv = disk->private_data;
632 mutex_enter(&zv->zv_state_lock);
633 ASSERT3U(zv->zv_open_count, >, 0);
635 * make sure zvol is not suspended during last close
636 * (hold zv_suspend_lock) and respect proper lock acquisition
637 * ordering - zv_suspend_lock before zv_state_lock
639 if (zv->zv_open_count == 1) {
640 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
641 mutex_exit(&zv->zv_state_lock);
642 rw_enter(&zv->zv_suspend_lock, RW_READER);
643 mutex_enter(&zv->zv_state_lock);
644 /* check to see if zv_suspend_lock is needed */
645 if (zv->zv_open_count != 1) {
646 rw_exit(&zv->zv_suspend_lock);
647 drop_suspend = B_FALSE;
650 } else {
651 drop_suspend = B_FALSE;
653 rw_exit(&zvol_state_lock);
655 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
657 zv->zv_open_count--;
658 if (zv->zv_open_count == 0) {
659 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
660 zvol_last_close(zv);
663 mutex_exit(&zv->zv_state_lock);
665 if (drop_suspend)
666 rw_exit(&zv->zv_suspend_lock);
669 static int
670 zvol_ioctl(struct block_device *bdev, fmode_t mode,
671 unsigned int cmd, unsigned long arg)
673 zvol_state_t *zv = bdev->bd_disk->private_data;
674 int error = 0;
676 ASSERT3U(zv->zv_open_count, >, 0);
678 switch (cmd) {
679 case BLKFLSBUF:
680 fsync_bdev(bdev);
681 invalidate_bdev(bdev);
682 rw_enter(&zv->zv_suspend_lock, RW_READER);
684 if (!(zv->zv_flags & ZVOL_RDONLY))
685 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
687 rw_exit(&zv->zv_suspend_lock);
688 break;
690 case BLKZNAME:
691 mutex_enter(&zv->zv_state_lock);
692 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
693 mutex_exit(&zv->zv_state_lock);
694 break;
696 default:
697 error = -ENOTTY;
698 break;
701 return (SET_ERROR(error));
704 #ifdef CONFIG_COMPAT
705 static int
706 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
707 unsigned cmd, unsigned long arg)
709 return (zvol_ioctl(bdev, mode, cmd, arg));
711 #else
712 #define zvol_compat_ioctl NULL
713 #endif
715 static unsigned int
716 zvol_check_events(struct gendisk *disk, unsigned int clearing)
718 unsigned int mask = 0;
720 rw_enter(&zvol_state_lock, RW_READER);
722 zvol_state_t *zv = disk->private_data;
723 if (zv != NULL) {
724 mutex_enter(&zv->zv_state_lock);
725 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
726 zv->zv_changed = 0;
727 mutex_exit(&zv->zv_state_lock);
730 rw_exit(&zvol_state_lock);
732 return (mask);
735 static int
736 zvol_revalidate_disk(struct gendisk *disk)
738 rw_enter(&zvol_state_lock, RW_READER);
740 zvol_state_t *zv = disk->private_data;
741 if (zv != NULL) {
742 mutex_enter(&zv->zv_state_lock);
743 set_capacity(zv->zv_zso->zvo_disk,
744 zv->zv_volsize >> SECTOR_BITS);
745 mutex_exit(&zv->zv_state_lock);
748 rw_exit(&zvol_state_lock);
750 return (0);
754 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
756 struct gendisk *disk = zv->zv_zso->zvo_disk;
758 #if defined(HAVE_REVALIDATE_DISK_SIZE)
759 revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
760 #elif defined(HAVE_REVALIDATE_DISK)
761 revalidate_disk(disk);
762 #else
763 zvol_revalidate_disk(disk);
764 #endif
765 return (0);
768 void
769 zvol_os_clear_private(zvol_state_t *zv)
772 * Cleared while holding zvol_state_lock as a writer
773 * which will prevent zvol_open() from opening it.
775 zv->zv_zso->zvo_disk->private_data = NULL;
779 * Provide a simple virtual geometry for legacy compatibility. For devices
780 * smaller than 1 MiB a small head and sector count is used to allow very
781 * tiny devices. For devices over 1 Mib a standard head and sector count
782 * is used to keep the cylinders count reasonable.
784 static int
785 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
787 zvol_state_t *zv = bdev->bd_disk->private_data;
788 sector_t sectors;
790 ASSERT3U(zv->zv_open_count, >, 0);
792 sectors = get_capacity(zv->zv_zso->zvo_disk);
794 if (sectors > 2048) {
795 geo->heads = 16;
796 geo->sectors = 63;
797 } else {
798 geo->heads = 2;
799 geo->sectors = 4;
802 geo->start = 0;
803 geo->cylinders = sectors / (geo->heads * geo->sectors);
805 return (0);
808 static const struct block_device_operations zvol_ops = {
809 .open = zvol_open,
810 .release = zvol_release,
811 .ioctl = zvol_ioctl,
812 .compat_ioctl = zvol_compat_ioctl,
813 .check_events = zvol_check_events,
814 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
815 .revalidate_disk = zvol_revalidate_disk,
816 #endif
817 .getgeo = zvol_getgeo,
818 .owner = THIS_MODULE,
819 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
820 .submit_bio = zvol_submit_bio,
821 #endif
825 * Allocate memory for a new zvol_state_t and setup the required
826 * request queue and generic disk structures for the block device.
828 static zvol_state_t *
829 zvol_alloc(dev_t dev, const char *name)
831 zvol_state_t *zv;
832 struct zvol_state_os *zso;
833 uint64_t volmode;
835 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
836 return (NULL);
838 if (volmode == ZFS_VOLMODE_DEFAULT)
839 volmode = zvol_volmode;
841 if (volmode == ZFS_VOLMODE_NONE)
842 return (NULL);
844 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
845 zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
846 zv->zv_zso = zso;
847 zv->zv_volmode = volmode;
849 list_link_init(&zv->zv_next);
850 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
852 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
853 #ifdef HAVE_BLK_ALLOC_DISK
854 zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
855 if (zso->zvo_disk == NULL)
856 goto out_kmem;
858 zso->zvo_disk->minors = ZVOL_MINORS;
859 zso->zvo_queue = zso->zvo_disk->queue;
860 #else
861 zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
862 if (zso->zvo_queue == NULL)
863 goto out_kmem;
865 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
866 if (zso->zvo_disk == NULL) {
867 blk_cleanup_queue(zso->zvo_queue);
868 goto out_kmem;
871 zso->zvo_disk->queue = zso->zvo_queue;
872 #endif /* HAVE_BLK_ALLOC_DISK */
873 #else
874 zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
875 if (zso->zvo_queue == NULL)
876 goto out_kmem;
878 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
879 if (zso->zvo_disk == NULL) {
880 blk_cleanup_queue(zso->zvo_queue);
881 goto out_kmem;
884 zso->zvo_disk->queue = zso->zvo_queue;
885 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
887 blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
889 /* Limit read-ahead to a single page to prevent over-prefetching. */
890 blk_queue_set_read_ahead(zso->zvo_queue, 1);
892 /* Disable write merging in favor of the ZIO pipeline. */
893 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
895 /* Enable /proc/diskstats */
896 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
898 zso->zvo_queue->queuedata = zv;
899 zso->zvo_dev = dev;
900 zv->zv_open_count = 0;
901 strlcpy(zv->zv_name, name, MAXNAMELEN);
903 zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
904 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
906 zso->zvo_disk->major = zvol_major;
907 zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
910 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
911 * This is accomplished by limiting the number of minors for the
912 * device to one and explicitly disabling partition scanning.
914 if (volmode == ZFS_VOLMODE_DEV) {
915 zso->zvo_disk->minors = 1;
916 zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
917 zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
920 zso->zvo_disk->first_minor = (dev & MINORMASK);
921 zso->zvo_disk->fops = &zvol_ops;
922 zso->zvo_disk->private_data = zv;
923 snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
924 ZVOL_DEV_NAME, (dev & MINORMASK));
926 return (zv);
928 out_kmem:
929 kmem_free(zso, sizeof (struct zvol_state_os));
930 kmem_free(zv, sizeof (zvol_state_t));
931 return (NULL);
935 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
936 * At this time, the structure is not opened by anyone, is taken off
937 * the zvol_state_list, and has its private data set to NULL.
938 * The zvol_state_lock is dropped.
940 * This function may take many milliseconds to complete (e.g. we've seen
941 * it take over 256ms), due to the calls to "blk_cleanup_queue" and
942 * "del_gendisk". Thus, consumers need to be careful to account for this
943 * latency when calling this function.
945 void
946 zvol_os_free(zvol_state_t *zv)
949 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
950 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
951 ASSERT0(zv->zv_open_count);
952 ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
954 rw_destroy(&zv->zv_suspend_lock);
955 zfs_rangelock_fini(&zv->zv_rangelock);
957 del_gendisk(zv->zv_zso->zvo_disk);
958 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
959 defined(HAVE_BLK_ALLOC_DISK)
960 blk_cleanup_disk(zv->zv_zso->zvo_disk);
961 #else
962 blk_cleanup_queue(zv->zv_zso->zvo_queue);
963 put_disk(zv->zv_zso->zvo_disk);
964 #endif
966 ida_simple_remove(&zvol_ida,
967 MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
969 mutex_destroy(&zv->zv_state_lock);
970 dataset_kstats_destroy(&zv->zv_kstat);
972 kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
973 kmem_free(zv, sizeof (zvol_state_t));
976 void
977 zvol_wait_close(zvol_state_t *zv)
982 * Create a block device minor node and setup the linkage between it
983 * and the specified volume. Once this function returns the block
984 * device is live and ready for use.
987 zvol_os_create_minor(const char *name)
989 zvol_state_t *zv;
990 objset_t *os;
991 dmu_object_info_t *doi;
992 uint64_t volsize;
993 uint64_t len;
994 unsigned minor = 0;
995 int error = 0;
996 int idx;
997 uint64_t hash = zvol_name_hash(name);
999 if (zvol_inhibit_dev)
1000 return (0);
1002 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1003 if (idx < 0)
1004 return (SET_ERROR(-idx));
1005 minor = idx << ZVOL_MINOR_BITS;
1007 zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1008 if (zv) {
1009 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1010 mutex_exit(&zv->zv_state_lock);
1011 ida_simple_remove(&zvol_ida, idx);
1012 return (SET_ERROR(EEXIST));
1015 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1017 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1018 if (error)
1019 goto out_doi;
1021 error = dmu_object_info(os, ZVOL_OBJ, doi);
1022 if (error)
1023 goto out_dmu_objset_disown;
1025 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1026 if (error)
1027 goto out_dmu_objset_disown;
1029 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1030 if (zv == NULL) {
1031 error = SET_ERROR(EAGAIN);
1032 goto out_dmu_objset_disown;
1034 zv->zv_hash = hash;
1036 if (dmu_objset_is_snapshot(os))
1037 zv->zv_flags |= ZVOL_RDONLY;
1039 zv->zv_volblocksize = doi->doi_data_block_size;
1040 zv->zv_volsize = volsize;
1041 zv->zv_objset = os;
1043 set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1045 blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
1046 (DMU_MAX_ACCESS / 4) >> 9);
1047 blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
1048 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
1049 blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
1050 zv->zv_volblocksize);
1051 blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
1052 blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
1053 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1054 blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
1055 zv->zv_volblocksize);
1056 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1057 #ifdef QUEUE_FLAG_NONROT
1058 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1059 #endif
1060 #ifdef QUEUE_FLAG_ADD_RANDOM
1061 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1062 #endif
1063 /* This flag was introduced in kernel version 4.12. */
1064 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1065 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1066 #endif
1068 ASSERT3P(zv->zv_zilog, ==, NULL);
1069 zv->zv_zilog = zil_open(os, zvol_get_data);
1070 if (spa_writeable(dmu_objset_spa(os))) {
1071 if (zil_replay_disable)
1072 zil_destroy(zv->zv_zilog, B_FALSE);
1073 else
1074 zil_replay(os, zv, zvol_replay_vector);
1076 zil_close(zv->zv_zilog);
1077 zv->zv_zilog = NULL;
1078 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1079 dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1082 * When udev detects the addition of the device it will immediately
1083 * invoke blkid(8) to determine the type of content on the device.
1084 * Prefetching the blocks commonly scanned by blkid(8) will speed
1085 * up this process.
1087 len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
1088 if (len > 0) {
1089 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1090 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1091 ZIO_PRIORITY_SYNC_READ);
1094 zv->zv_objset = NULL;
1095 out_dmu_objset_disown:
1096 dmu_objset_disown(os, B_TRUE, FTAG);
1097 out_doi:
1098 kmem_free(doi, sizeof (dmu_object_info_t));
1101 * Keep in mind that once add_disk() is called, the zvol is
1102 * announced to the world, and zvol_open()/zvol_release() can
1103 * be called at any time. Incidentally, add_disk() itself calls
1104 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1105 * directly as well.
1107 if (error == 0) {
1108 rw_enter(&zvol_state_lock, RW_WRITER);
1109 zvol_insert(zv);
1110 rw_exit(&zvol_state_lock);
1111 #ifdef HAVE_ADD_DISK_RET
1112 error = add_disk(zv->zv_zso->zvo_disk);
1113 #else
1114 add_disk(zv->zv_zso->zvo_disk);
1115 #endif
1116 } else {
1117 ida_simple_remove(&zvol_ida, idx);
1120 return (error);
1123 void
1124 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1126 int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1128 ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1129 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1131 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1133 /* move to new hashtable entry */
1134 zv->zv_hash = zvol_name_hash(zv->zv_name);
1135 hlist_del(&zv->zv_hlink);
1136 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1139 * The block device's read-only state is briefly changed causing
1140 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1141 * the name change and fixes the symlinks. This does not change
1142 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1143 * changes. This would normally be done using kobject_uevent() but
1144 * that is a GPL-only symbol which is why we need this workaround.
1146 set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1147 set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1150 void
1151 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1154 set_disk_ro(zv->zv_zso->zvo_disk, flags);
1157 void
1158 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1161 set_capacity(zv->zv_zso->zvo_disk, capacity);
1165 zvol_init(void)
1167 int error;
1168 int threads = MIN(MAX(zvol_threads, 1), 1024);
1170 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1171 if (error) {
1172 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1173 return (error);
1175 zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri,
1176 threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1177 if (zvol_taskq == NULL) {
1178 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1179 return (-ENOMEM);
1181 zvol_init_impl();
1182 ida_init(&zvol_ida);
1183 return (0);
1186 void
1187 zvol_fini(void)
1189 zvol_fini_impl();
1190 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1191 taskq_destroy(zvol_taskq);
1192 ida_destroy(&zvol_ida);
1195 /* BEGIN CSTYLED */
1196 module_param(zvol_inhibit_dev, uint, 0644);
1197 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1199 module_param(zvol_major, uint, 0444);
1200 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1202 module_param(zvol_threads, uint, 0444);
1203 MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests");
1205 module_param(zvol_request_sync, uint, 0644);
1206 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
1208 module_param(zvol_max_discard_blocks, ulong, 0444);
1209 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1211 module_param(zvol_prefetch_bytes, uint, 0644);
1212 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
1214 module_param(zvol_volmode, uint, 0644);
1215 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
1216 /* END CSTYLED */