4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 #include <sys/dataset_kstats.h>
27 #include <sys/dmu_traverse.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
32 #include <sys/zfeature.h>
33 #include <sys/zil_impl.h>
34 #include <sys/dmu_tx.h>
36 #include <sys/zfs_rlock.h>
37 #include <sys/spa_impl.h>
39 #include <sys/zvol_impl.h>
41 #include <linux/blkdev_compat.h>
42 #include <linux/task_io_accounting_ops.h>
45 #include <linux/blk-mq.h>
48 static void zvol_request_impl(zvol_state_t
*zv
, struct bio
*bio
,
49 struct request
*rq
, boolean_t force_sync
);
51 static unsigned int zvol_major
= ZVOL_MAJOR
;
52 static unsigned int zvol_request_sync
= 0;
53 static unsigned int zvol_prefetch_bytes
= (128 * 1024);
54 static unsigned long zvol_max_discard_blocks
= 16384;
56 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
57 static const unsigned int zvol_open_timeout_ms
= 1000;
60 static unsigned int zvol_threads
= 0;
62 static unsigned int zvol_blk_mq_threads
= 0;
63 static unsigned int zvol_blk_mq_actual_threads
;
64 static boolean_t zvol_use_blk_mq
= B_FALSE
;
67 * The maximum number of volblocksize blocks to process per thread. Typically,
68 * write heavy workloads preform better with higher values here, and read
69 * heavy workloads preform better with lower values, but that's not a hard
70 * and fast rule. It's basically a knob to tune between "less overhead with
71 * less parallelism" and "more overhead, but more parallelism".
73 * '8' was chosen as a reasonable, balanced, default based off of sequential
74 * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
76 static unsigned int zvol_blk_mq_blocks_per_thread
= 8;
79 #ifndef BLKDEV_DEFAULT_RQ
80 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
81 #define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
85 * Finalize our BIO or request.
88 #define END_IO(zv, bio, rq, error) do { \
90 BIO_END_IO(bio, error); \
92 blk_mq_end_request(rq, errno_to_bi_status(error)); \
96 #define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error)
100 static unsigned int zvol_blk_mq_queue_depth
= BLKDEV_DEFAULT_RQ
;
101 static unsigned int zvol_actual_blk_mq_queue_depth
;
104 struct zvol_state_os
{
105 struct gendisk
*zvo_disk
; /* generic disk */
106 struct request_queue
*zvo_queue
; /* request queue */
107 dev_t zvo_dev
; /* device id */
110 struct blk_mq_tag_set tag_set
;
113 /* Set from the global 'zvol_use_blk_mq' at zvol load */
114 boolean_t use_blk_mq
;
118 static struct ida zvol_ida
;
120 typedef struct zv_request_stack
{
126 typedef struct zv_work
{
128 struct work_struct work
;
131 typedef struct zv_request_task
{
136 static zv_request_task_t
*
137 zv_request_task_create(zv_request_t zvr
)
139 zv_request_task_t
*task
;
140 task
= kmem_alloc(sizeof (zv_request_task_t
), KM_SLEEP
);
141 taskq_init_ent(&task
->ent
);
147 zv_request_task_free(zv_request_task_t
*task
)
149 kmem_free(task
, sizeof (*task
));
155 * This is called when a new block multiqueue request comes in. A request
156 * contains one or more BIOs.
158 static blk_status_t
zvol_mq_queue_rq(struct blk_mq_hw_ctx
*hctx
,
159 const struct blk_mq_queue_data
*bd
)
161 struct request
*rq
= bd
->rq
;
162 zvol_state_t
*zv
= rq
->q
->queuedata
;
164 /* Tell the kernel that we are starting to process this request */
165 blk_mq_start_request(rq
);
167 if (blk_rq_is_passthrough(rq
)) {
168 /* Skip non filesystem request */
169 blk_mq_end_request(rq
, BLK_STS_IOERR
);
170 return (BLK_STS_IOERR
);
173 zvol_request_impl(zv
, NULL
, rq
, 0);
175 /* Acknowledge to the kernel that we got this request */
179 static struct blk_mq_ops zvol_blk_mq_queue_ops
= {
180 .queue_rq
= zvol_mq_queue_rq
,
183 /* Initialize our blk-mq struct */
184 static int zvol_blk_mq_alloc_tag_set(zvol_state_t
*zv
)
186 struct zvol_state_os
*zso
= zv
->zv_zso
;
188 memset(&zso
->tag_set
, 0, sizeof (zso
->tag_set
));
190 /* Initialize tag set. */
191 zso
->tag_set
.ops
= &zvol_blk_mq_queue_ops
;
192 zso
->tag_set
.nr_hw_queues
= zvol_blk_mq_actual_threads
;
193 zso
->tag_set
.queue_depth
= zvol_actual_blk_mq_queue_depth
;
194 zso
->tag_set
.numa_node
= NUMA_NO_NODE
;
195 zso
->tag_set
.cmd_size
= 0;
198 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
199 * zvol_request_impl()
201 zso
->tag_set
.flags
= BLK_MQ_F_SHOULD_MERGE
| BLK_MQ_F_BLOCKING
;
202 zso
->tag_set
.driver_data
= zv
;
204 return (blk_mq_alloc_tag_set(&zso
->tag_set
));
206 #endif /* HAVE_BLK_MQ */
209 * Given a path, return TRUE if path is a ZVOL.
212 zvol_os_is_zvol(const char *path
)
216 if (vdev_lookup_bdev(path
, &dev
) != 0)
219 if (MAJOR(dev
) == zvol_major
)
226 zvol_write(zv_request_t
*zvr
)
228 struct bio
*bio
= zvr
->bio
;
229 struct request
*rq
= zvr
->rq
;
232 zvol_state_t
*zv
= zvr
->zv
;
233 struct request_queue
*q
;
234 struct gendisk
*disk
;
235 unsigned long start_time
= 0;
236 boolean_t acct
= B_FALSE
;
238 ASSERT3P(zv
, !=, NULL
);
239 ASSERT3U(zv
->zv_open_count
, >, 0);
240 ASSERT3P(zv
->zv_zilog
, !=, NULL
);
242 q
= zv
->zv_zso
->zvo_queue
;
243 disk
= zv
->zv_zso
->zvo_disk
;
245 /* bio marked as FLUSH need to flush before write */
246 if (io_is_flush(bio
, rq
))
247 zil_commit(zv
->zv_zilog
, ZVOL_OBJ
);
249 /* Some requests are just for flush and nothing else. */
250 if (io_size(bio
, rq
) == 0) {
251 rw_exit(&zv
->zv_suspend_lock
);
252 END_IO(zv
, bio
, rq
, 0);
256 zfs_uio_bvec_init(&uio
, bio
, rq
);
258 ssize_t start_resid
= uio
.uio_resid
;
261 * With use_blk_mq, accounting is done by blk_mq_start_request()
262 * and blk_mq_end_request(), so we can skip it here.
265 acct
= blk_queue_io_stat(q
);
267 start_time
= blk_generic_start_io_acct(q
, disk
, WRITE
,
273 io_is_fua(bio
, rq
) || zv
->zv_objset
->os_sync
== ZFS_SYNC_ALWAYS
;
275 zfs_locked_range_t
*lr
= zfs_rangelock_enter(&zv
->zv_rangelock
,
276 uio
.uio_loffset
, uio
.uio_resid
, RL_WRITER
);
278 uint64_t volsize
= zv
->zv_volsize
;
279 while (uio
.uio_resid
> 0 && uio
.uio_loffset
< volsize
) {
280 uint64_t bytes
= MIN(uio
.uio_resid
, DMU_MAX_ACCESS
>> 1);
281 uint64_t off
= uio
.uio_loffset
;
282 dmu_tx_t
*tx
= dmu_tx_create(zv
->zv_objset
);
284 if (bytes
> volsize
- off
) /* don't write past the end */
285 bytes
= volsize
- off
;
287 dmu_tx_hold_write_by_dnode(tx
, zv
->zv_dn
, off
, bytes
);
289 /* This will only fail for ENOSPC */
290 error
= dmu_tx_assign(tx
, TXG_WAIT
);
295 error
= dmu_write_uio_dnode(zv
->zv_dn
, &uio
, bytes
, tx
);
297 zvol_log_write(zv
, tx
, off
, bytes
, sync
);
304 zfs_rangelock_exit(lr
);
306 int64_t nwritten
= start_resid
- uio
.uio_resid
;
307 dataset_kstats_update_write_kstats(&zv
->zv_kstat
, nwritten
);
308 task_io_account_write(nwritten
);
311 zil_commit(zv
->zv_zilog
, ZVOL_OBJ
);
313 rw_exit(&zv
->zv_suspend_lock
);
316 blk_generic_end_io_acct(q
, disk
, WRITE
, bio
, start_time
);
319 END_IO(zv
, bio
, rq
, -error
);
323 zvol_write_task(void *arg
)
325 zv_request_task_t
*task
= arg
;
326 zvol_write(&task
->zvr
);
327 zv_request_task_free(task
);
331 zvol_discard(zv_request_t
*zvr
)
333 struct bio
*bio
= zvr
->bio
;
334 struct request
*rq
= zvr
->rq
;
335 zvol_state_t
*zv
= zvr
->zv
;
336 uint64_t start
= io_offset(bio
, rq
);
337 uint64_t size
= io_size(bio
, rq
);
338 uint64_t end
= start
+ size
;
342 struct request_queue
*q
= zv
->zv_zso
->zvo_queue
;
343 struct gendisk
*disk
= zv
->zv_zso
->zvo_disk
;
344 unsigned long start_time
= 0;
346 boolean_t acct
= blk_queue_io_stat(q
);
348 ASSERT3P(zv
, !=, NULL
);
349 ASSERT3U(zv
->zv_open_count
, >, 0);
350 ASSERT3P(zv
->zv_zilog
, !=, NULL
);
353 acct
= blk_queue_io_stat(q
);
355 start_time
= blk_generic_start_io_acct(q
, disk
, WRITE
,
360 sync
= io_is_fua(bio
, rq
) || zv
->zv_objset
->os_sync
== ZFS_SYNC_ALWAYS
;
362 if (end
> zv
->zv_volsize
) {
363 error
= SET_ERROR(EIO
);
368 * Align the request to volume block boundaries when a secure erase is
369 * not required. This will prevent dnode_free_range() from zeroing out
370 * the unaligned parts which is slow (read-modify-write) and useless
371 * since we are not freeing any space by doing so.
373 if (!io_is_secure_erase(bio
, rq
)) {
374 start
= P2ROUNDUP(start
, zv
->zv_volblocksize
);
375 end
= P2ALIGN(end
, zv
->zv_volblocksize
);
382 zfs_locked_range_t
*lr
= zfs_rangelock_enter(&zv
->zv_rangelock
,
383 start
, size
, RL_WRITER
);
385 tx
= dmu_tx_create(zv
->zv_objset
);
386 dmu_tx_mark_netfree(tx
);
387 error
= dmu_tx_assign(tx
, TXG_WAIT
);
391 zvol_log_truncate(zv
, tx
, start
, size
, B_TRUE
);
393 error
= dmu_free_long_range(zv
->zv_objset
,
394 ZVOL_OBJ
, start
, size
);
396 zfs_rangelock_exit(lr
);
398 if (error
== 0 && sync
)
399 zil_commit(zv
->zv_zilog
, ZVOL_OBJ
);
402 rw_exit(&zv
->zv_suspend_lock
);
405 blk_generic_end_io_acct(q
, disk
, WRITE
, bio
,
409 END_IO(zv
, bio
, rq
, -error
);
413 zvol_discard_task(void *arg
)
415 zv_request_task_t
*task
= arg
;
416 zvol_discard(&task
->zvr
);
417 zv_request_task_free(task
);
421 zvol_read(zv_request_t
*zvr
)
423 struct bio
*bio
= zvr
->bio
;
424 struct request
*rq
= zvr
->rq
;
427 boolean_t acct
= B_FALSE
;
428 zvol_state_t
*zv
= zvr
->zv
;
429 struct request_queue
*q
;
430 struct gendisk
*disk
;
431 unsigned long start_time
= 0;
433 ASSERT3P(zv
, !=, NULL
);
434 ASSERT3U(zv
->zv_open_count
, >, 0);
436 zfs_uio_bvec_init(&uio
, bio
, rq
);
438 q
= zv
->zv_zso
->zvo_queue
;
439 disk
= zv
->zv_zso
->zvo_disk
;
441 ssize_t start_resid
= uio
.uio_resid
;
444 * When blk-mq is being used, accounting is done by
445 * blk_mq_start_request() and blk_mq_end_request().
448 acct
= blk_queue_io_stat(q
);
450 start_time
= blk_generic_start_io_acct(q
, disk
, READ
,
454 zfs_locked_range_t
*lr
= zfs_rangelock_enter(&zv
->zv_rangelock
,
455 uio
.uio_loffset
, uio
.uio_resid
, RL_READER
);
457 uint64_t volsize
= zv
->zv_volsize
;
459 while (uio
.uio_resid
> 0 && uio
.uio_loffset
< volsize
) {
460 uint64_t bytes
= MIN(uio
.uio_resid
, DMU_MAX_ACCESS
>> 1);
462 /* don't read past the end */
463 if (bytes
> volsize
- uio
.uio_loffset
)
464 bytes
= volsize
- uio
.uio_loffset
;
466 error
= dmu_read_uio_dnode(zv
->zv_dn
, &uio
, bytes
);
468 /* convert checksum errors into IO errors */
470 error
= SET_ERROR(EIO
);
474 zfs_rangelock_exit(lr
);
476 int64_t nread
= start_resid
- uio
.uio_resid
;
477 dataset_kstats_update_read_kstats(&zv
->zv_kstat
, nread
);
478 task_io_account_read(nread
);
480 rw_exit(&zv
->zv_suspend_lock
);
483 blk_generic_end_io_acct(q
, disk
, READ
, bio
, start_time
);
486 END_IO(zv
, bio
, rq
, -error
);
490 zvol_read_task(void *arg
)
492 zv_request_task_t
*task
= arg
;
493 zvol_read(&task
->zvr
);
494 zv_request_task_free(task
);
499 * Process a BIO or request
501 * Either 'bio' or 'rq' should be set depending on if we are processing a
502 * bio or a request (both should not be set).
504 * force_sync: Set to 0 to defer processing to a background taskq
505 * Set to 1 to process data synchronously
508 zvol_request_impl(zvol_state_t
*zv
, struct bio
*bio
, struct request
*rq
,
509 boolean_t force_sync
)
511 fstrans_cookie_t cookie
= spl_fstrans_mark();
512 uint64_t offset
= io_offset(bio
, rq
);
513 uint64_t size
= io_size(bio
, rq
);
514 int rw
= io_data_dir(bio
, rq
);
516 if (zvol_request_sync
)
525 if (io_has_data(bio
, rq
) && offset
+ size
> zv
->zv_volsize
) {
526 printk(KERN_INFO
"%s: bad access: offset=%llu, size=%lu\n",
527 zv
->zv_zso
->zvo_disk
->disk_name
,
528 (long long unsigned)offset
,
529 (long unsigned)size
);
531 END_IO(zv
, bio
, rq
, -SET_ERROR(EIO
));
535 zv_request_task_t
*task
;
538 if (unlikely(zv
->zv_flags
& ZVOL_RDONLY
)) {
539 END_IO(zv
, bio
, rq
, -SET_ERROR(EROFS
));
544 * Prevents the zvol from being suspended, or the ZIL being
545 * concurrently opened. Will be released after the i/o
548 rw_enter(&zv
->zv_suspend_lock
, RW_READER
);
551 * Open a ZIL if this is the first time we have written to this
552 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
553 * than zv_state_lock so that we don't need to acquire an
554 * additional lock in this path.
556 if (zv
->zv_zilog
== NULL
) {
557 rw_exit(&zv
->zv_suspend_lock
);
558 rw_enter(&zv
->zv_suspend_lock
, RW_WRITER
);
559 if (zv
->zv_zilog
== NULL
) {
560 zv
->zv_zilog
= zil_open(zv
->zv_objset
,
561 zvol_get_data
, &zv
->zv_kstat
.dk_zil_sums
);
562 zv
->zv_flags
|= ZVOL_WRITTEN_TO
;
563 /* replay / destroy done in zvol_create_minor */
564 VERIFY0((zv
->zv_zilog
->zl_header
->zh_flags
&
567 rw_downgrade(&zv
->zv_suspend_lock
);
571 * We don't want this thread to be blocked waiting for i/o to
572 * complete, so we instead wait from a taskq callback. The
573 * i/o may be a ZIL write (via zil_commit()), or a read of an
574 * indirect block, or a read of a data block (if this is a
575 * partial-block write). We will indicate that the i/o is
576 * complete by calling END_IO() from the taskq callback.
578 * This design allows the calling thread to continue and
579 * initiate more concurrent operations by calling
580 * zvol_request() again. There are typically only a small
581 * number of threads available to call zvol_request() (e.g.
582 * one per iSCSI target), so keeping the latency of
583 * zvol_request() low is important for performance.
585 * The zvol_request_sync module parameter allows this
586 * behavior to be altered, for performance evaluation
587 * purposes. If the callback blocks, setting
588 * zvol_request_sync=1 will result in much worse performance.
590 * We can have up to zvol_threads concurrent i/o's being
591 * processed for all zvols on the system. This is typically
592 * a vast improvement over the zvol_request_sync=1 behavior
593 * of one i/o at a time per zvol. However, an even better
594 * design would be for zvol_request() to initiate the zio
595 * directly, and then be notified by the zio_done callback,
596 * which would call END_IO(). Unfortunately, the DMU/ZIL
597 * interfaces lack this functionality (they block waiting for
598 * the i/o to complete).
600 if (io_is_discard(bio
, rq
) || io_is_secure_erase(bio
, rq
)) {
604 task
= zv_request_task_create(zvr
);
605 taskq_dispatch_ent(zvol_taskq
,
606 zvol_discard_task
, task
, 0, &task
->ent
);
612 task
= zv_request_task_create(zvr
);
613 taskq_dispatch_ent(zvol_taskq
,
614 zvol_write_task
, task
, 0, &task
->ent
);
619 * The SCST driver, and possibly others, may issue READ I/Os
620 * with a length of zero bytes. These empty I/Os contain no
621 * data and require no additional handling.
624 END_IO(zv
, bio
, rq
, 0);
628 rw_enter(&zv
->zv_suspend_lock
, RW_READER
);
630 /* See comment in WRITE case above. */
634 task
= zv_request_task_create(zvr
);
635 taskq_dispatch_ent(zvol_taskq
,
636 zvol_read_task
, task
, 0, &task
->ent
);
641 spl_fstrans_unmark(cookie
);
644 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
645 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
647 zvol_submit_bio(struct bio
*bio
)
650 zvol_submit_bio(struct bio
*bio
)
653 static MAKE_REQUEST_FN_RET
654 zvol_request(struct request_queue
*q
, struct bio
*bio
)
657 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
658 #if defined(HAVE_BIO_BDEV_DISK)
659 struct request_queue
*q
= bio
->bi_bdev
->bd_disk
->queue
;
661 struct request_queue
*q
= bio
->bi_disk
->queue
;
664 zvol_state_t
*zv
= q
->queuedata
;
666 zvol_request_impl(zv
, bio
, NULL
, 0);
667 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
668 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
669 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
670 return (BLK_QC_T_NONE
);
675 zvol_open(struct block_device
*bdev
, fmode_t flag
)
679 boolean_t drop_suspend
= B_FALSE
;
680 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
681 hrtime_t timeout
= MSEC2NSEC(zvol_open_timeout_ms
);
682 hrtime_t start
= gethrtime();
686 rw_enter(&zvol_state_lock
, RW_READER
);
688 * Obtain a copy of private_data under the zvol_state_lock to make
689 * sure that either the result of zvol free code path setting
690 * bdev->bd_disk->private_data to NULL is observed, or zvol_os_free()
691 * is not called on this zv because of the positive zv_open_count.
693 zv
= bdev
->bd_disk
->private_data
;
695 rw_exit(&zvol_state_lock
);
696 return (SET_ERROR(-ENXIO
));
699 mutex_enter(&zv
->zv_state_lock
);
701 * Make sure zvol is not suspended during first open
702 * (hold zv_suspend_lock) and respect proper lock acquisition
703 * ordering - zv_suspend_lock before zv_state_lock
705 if (zv
->zv_open_count
== 0) {
706 if (!rw_tryenter(&zv
->zv_suspend_lock
, RW_READER
)) {
707 mutex_exit(&zv
->zv_state_lock
);
708 rw_enter(&zv
->zv_suspend_lock
, RW_READER
);
709 mutex_enter(&zv
->zv_state_lock
);
710 /* check to see if zv_suspend_lock is needed */
711 if (zv
->zv_open_count
!= 0) {
712 rw_exit(&zv
->zv_suspend_lock
);
714 drop_suspend
= B_TRUE
;
717 drop_suspend
= B_TRUE
;
720 rw_exit(&zvol_state_lock
);
722 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
724 if (zv
->zv_open_count
== 0) {
725 boolean_t drop_namespace
= B_FALSE
;
727 ASSERT(RW_READ_HELD(&zv
->zv_suspend_lock
));
730 * In all other call paths the spa_namespace_lock is taken
731 * before the bdev->bd_mutex lock. However, on open(2)
732 * the __blkdev_get() function calls fops->open() with the
733 * bdev->bd_mutex lock held. This can result in a deadlock
734 * when zvols from one pool are used as vdevs in another.
736 * To prevent a lock inversion deadlock we preemptively
737 * take the spa_namespace_lock. Normally the lock will not
738 * be contended and this is safe because spa_open_common()
739 * handles the case where the caller already holds the
740 * spa_namespace_lock.
742 * When the lock cannot be aquired after multiple retries
743 * this must be the vdev on zvol deadlock case and we have
744 * no choice but to return an error. For 5.12 and older
745 * kernels returning -ERESTARTSYS will result in the
746 * bdev->bd_mutex being dropped, then reacquired, and
747 * fops->open() being called again. This process can be
748 * repeated safely until both locks are acquired. For 5.13
749 * and newer the -ERESTARTSYS retry logic was removed from
750 * the kernel so the only option is to return the error for
751 * the caller to handle it.
753 if (!mutex_owned(&spa_namespace_lock
)) {
754 if (!mutex_tryenter(&spa_namespace_lock
)) {
755 mutex_exit(&zv
->zv_state_lock
);
756 rw_exit(&zv
->zv_suspend_lock
);
758 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
760 return (SET_ERROR(-ERESTARTSYS
));
762 if ((gethrtime() - start
) > timeout
)
763 return (SET_ERROR(-ERESTARTSYS
));
765 schedule_timeout(MSEC_TO_TICK(10));
769 drop_namespace
= B_TRUE
;
773 error
= -zvol_first_open(zv
, !(flag
& FMODE_WRITE
));
776 mutex_exit(&spa_namespace_lock
);
780 if ((flag
& FMODE_WRITE
) && (zv
->zv_flags
& ZVOL_RDONLY
)) {
781 if (zv
->zv_open_count
== 0)
784 error
= SET_ERROR(-EROFS
);
790 mutex_exit(&zv
->zv_state_lock
);
792 rw_exit(&zv
->zv_suspend_lock
);
795 zfs_check_media_change(bdev
);
801 zvol_release(struct gendisk
*disk
, fmode_t mode
)
804 boolean_t drop_suspend
= B_TRUE
;
806 rw_enter(&zvol_state_lock
, RW_READER
);
807 zv
= disk
->private_data
;
809 mutex_enter(&zv
->zv_state_lock
);
810 ASSERT3U(zv
->zv_open_count
, >, 0);
812 * make sure zvol is not suspended during last close
813 * (hold zv_suspend_lock) and respect proper lock acquisition
814 * ordering - zv_suspend_lock before zv_state_lock
816 if (zv
->zv_open_count
== 1) {
817 if (!rw_tryenter(&zv
->zv_suspend_lock
, RW_READER
)) {
818 mutex_exit(&zv
->zv_state_lock
);
819 rw_enter(&zv
->zv_suspend_lock
, RW_READER
);
820 mutex_enter(&zv
->zv_state_lock
);
821 /* check to see if zv_suspend_lock is needed */
822 if (zv
->zv_open_count
!= 1) {
823 rw_exit(&zv
->zv_suspend_lock
);
824 drop_suspend
= B_FALSE
;
828 drop_suspend
= B_FALSE
;
830 rw_exit(&zvol_state_lock
);
832 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
835 if (zv
->zv_open_count
== 0) {
836 ASSERT(RW_READ_HELD(&zv
->zv_suspend_lock
));
840 mutex_exit(&zv
->zv_state_lock
);
843 rw_exit(&zv
->zv_suspend_lock
);
847 zvol_ioctl(struct block_device
*bdev
, fmode_t mode
,
848 unsigned int cmd
, unsigned long arg
)
850 zvol_state_t
*zv
= bdev
->bd_disk
->private_data
;
853 ASSERT3U(zv
->zv_open_count
, >, 0);
858 invalidate_bdev(bdev
);
859 rw_enter(&zv
->zv_suspend_lock
, RW_READER
);
861 if (!(zv
->zv_flags
& ZVOL_RDONLY
))
862 txg_wait_synced(dmu_objset_pool(zv
->zv_objset
), 0);
864 rw_exit(&zv
->zv_suspend_lock
);
868 mutex_enter(&zv
->zv_state_lock
);
869 error
= copy_to_user((void *)arg
, zv
->zv_name
, MAXNAMELEN
);
870 mutex_exit(&zv
->zv_state_lock
);
878 return (SET_ERROR(error
));
883 zvol_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
884 unsigned cmd
, unsigned long arg
)
886 return (zvol_ioctl(bdev
, mode
, cmd
, arg
));
889 #define zvol_compat_ioctl NULL
893 zvol_check_events(struct gendisk
*disk
, unsigned int clearing
)
895 unsigned int mask
= 0;
897 rw_enter(&zvol_state_lock
, RW_READER
);
899 zvol_state_t
*zv
= disk
->private_data
;
901 mutex_enter(&zv
->zv_state_lock
);
902 mask
= zv
->zv_changed
? DISK_EVENT_MEDIA_CHANGE
: 0;
904 mutex_exit(&zv
->zv_state_lock
);
907 rw_exit(&zvol_state_lock
);
913 zvol_revalidate_disk(struct gendisk
*disk
)
915 rw_enter(&zvol_state_lock
, RW_READER
);
917 zvol_state_t
*zv
= disk
->private_data
;
919 mutex_enter(&zv
->zv_state_lock
);
920 set_capacity(zv
->zv_zso
->zvo_disk
,
921 zv
->zv_volsize
>> SECTOR_BITS
);
922 mutex_exit(&zv
->zv_state_lock
);
925 rw_exit(&zvol_state_lock
);
931 zvol_os_update_volsize(zvol_state_t
*zv
, uint64_t volsize
)
933 struct gendisk
*disk
= zv
->zv_zso
->zvo_disk
;
935 #if defined(HAVE_REVALIDATE_DISK_SIZE)
936 revalidate_disk_size(disk
, zvol_revalidate_disk(disk
) == 0);
937 #elif defined(HAVE_REVALIDATE_DISK)
938 revalidate_disk(disk
);
940 zvol_revalidate_disk(disk
);
946 zvol_os_clear_private(zvol_state_t
*zv
)
949 * Cleared while holding zvol_state_lock as a writer
950 * which will prevent zvol_open() from opening it.
952 zv
->zv_zso
->zvo_disk
->private_data
= NULL
;
956 * Provide a simple virtual geometry for legacy compatibility. For devices
957 * smaller than 1 MiB a small head and sector count is used to allow very
958 * tiny devices. For devices over 1 Mib a standard head and sector count
959 * is used to keep the cylinders count reasonable.
962 zvol_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
964 zvol_state_t
*zv
= bdev
->bd_disk
->private_data
;
967 ASSERT3U(zv
->zv_open_count
, >, 0);
969 sectors
= get_capacity(zv
->zv_zso
->zvo_disk
);
971 if (sectors
> 2048) {
980 geo
->cylinders
= sectors
/ (geo
->heads
* geo
->sectors
);
986 * Why have two separate block_device_operations structs?
988 * Normally we'd just have one, and assign 'submit_bio' as needed. However,
989 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
990 * can't just change submit_bio dynamically at runtime. So just create two
991 * separate structs to get around this.
993 static const struct block_device_operations zvol_ops_blk_mq
= {
995 .release
= zvol_release
,
997 .compat_ioctl
= zvol_compat_ioctl
,
998 .check_events
= zvol_check_events
,
999 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1000 .revalidate_disk
= zvol_revalidate_disk
,
1002 .getgeo
= zvol_getgeo
,
1003 .owner
= THIS_MODULE
,
1006 static const struct block_device_operations zvol_ops
= {
1008 .release
= zvol_release
,
1009 .ioctl
= zvol_ioctl
,
1010 .compat_ioctl
= zvol_compat_ioctl
,
1011 .check_events
= zvol_check_events
,
1012 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1013 .revalidate_disk
= zvol_revalidate_disk
,
1015 .getgeo
= zvol_getgeo
,
1016 .owner
= THIS_MODULE
,
1017 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1018 .submit_bio
= zvol_submit_bio
,
1023 zvol_alloc_non_blk_mq(struct zvol_state_os
*zso
)
1025 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1026 #if defined(HAVE_BLK_ALLOC_DISK)
1027 zso
->zvo_disk
= blk_alloc_disk(NUMA_NO_NODE
);
1028 if (zso
->zvo_disk
== NULL
)
1031 zso
->zvo_disk
->minors
= ZVOL_MINORS
;
1032 zso
->zvo_queue
= zso
->zvo_disk
->queue
;
1034 zso
->zvo_queue
= blk_alloc_queue(NUMA_NO_NODE
);
1035 if (zso
->zvo_queue
== NULL
)
1038 zso
->zvo_disk
= alloc_disk(ZVOL_MINORS
);
1039 if (zso
->zvo_disk
== NULL
) {
1040 blk_cleanup_queue(zso
->zvo_queue
);
1044 zso
->zvo_disk
->queue
= zso
->zvo_queue
;
1045 #endif /* HAVE_BLK_ALLOC_DISK */
1047 zso
->zvo_queue
= blk_generic_alloc_queue(zvol_request
, NUMA_NO_NODE
);
1048 if (zso
->zvo_queue
== NULL
)
1051 zso
->zvo_disk
= alloc_disk(ZVOL_MINORS
);
1052 if (zso
->zvo_disk
== NULL
) {
1053 blk_cleanup_queue(zso
->zvo_queue
);
1057 zso
->zvo_disk
->queue
= zso
->zvo_queue
;
1058 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1064 zvol_alloc_blk_mq(zvol_state_t
*zv
)
1067 struct zvol_state_os
*zso
= zv
->zv_zso
;
1069 /* Allocate our blk-mq tag_set */
1070 if (zvol_blk_mq_alloc_tag_set(zv
) != 0)
1073 #if defined(HAVE_BLK_ALLOC_DISK)
1074 zso
->zvo_disk
= blk_mq_alloc_disk(&zso
->tag_set
, zv
);
1075 if (zso
->zvo_disk
== NULL
) {
1076 blk_mq_free_tag_set(&zso
->tag_set
);
1079 zso
->zvo_queue
= zso
->zvo_disk
->queue
;
1080 zso
->zvo_disk
->minors
= ZVOL_MINORS
;
1082 zso
->zvo_disk
= alloc_disk(ZVOL_MINORS
);
1083 if (zso
->zvo_disk
== NULL
) {
1084 blk_cleanup_queue(zso
->zvo_queue
);
1085 blk_mq_free_tag_set(&zso
->tag_set
);
1088 /* Allocate queue */
1089 zso
->zvo_queue
= blk_mq_init_queue(&zso
->tag_set
);
1090 if (IS_ERR(zso
->zvo_queue
)) {
1091 blk_mq_free_tag_set(&zso
->tag_set
);
1095 /* Our queue is now created, assign it to our disk */
1096 zso
->zvo_disk
->queue
= zso
->zvo_queue
;
1104 * Allocate memory for a new zvol_state_t and setup the required
1105 * request queue and generic disk structures for the block device.
1107 static zvol_state_t
*
1108 zvol_alloc(dev_t dev
, const char *name
)
1111 struct zvol_state_os
*zso
;
1115 if (dsl_prop_get_integer(name
, "volmode", &volmode
, NULL
) != 0)
1118 if (volmode
== ZFS_VOLMODE_DEFAULT
)
1119 volmode
= zvol_volmode
;
1121 if (volmode
== ZFS_VOLMODE_NONE
)
1124 zv
= kmem_zalloc(sizeof (zvol_state_t
), KM_SLEEP
);
1125 zso
= kmem_zalloc(sizeof (struct zvol_state_os
), KM_SLEEP
);
1127 zv
->zv_volmode
= volmode
;
1129 list_link_init(&zv
->zv_next
);
1130 mutex_init(&zv
->zv_state_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1133 zv
->zv_zso
->use_blk_mq
= zvol_use_blk_mq
;
1137 * The block layer has 3 interfaces for getting BIOs:
1139 * 1. blk-mq request queues (new)
1140 * 2. submit_bio() (oldest)
1141 * 3. regular request queues (old).
1143 * Each of those interfaces has two permutations:
1145 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1146 * both the disk and its queue (5.14 kernel or newer)
1148 * b) We don't have blk_*alloc_disk(), and have to allocate the
1149 * disk and the queue separately. (5.13 kernel or older)
1151 if (zv
->zv_zso
->use_blk_mq
) {
1152 ret
= zvol_alloc_blk_mq(zv
);
1153 zso
->zvo_disk
->fops
= &zvol_ops_blk_mq
;
1155 ret
= zvol_alloc_non_blk_mq(zso
);
1156 zso
->zvo_disk
->fops
= &zvol_ops
;
1161 blk_queue_set_write_cache(zso
->zvo_queue
, B_TRUE
, B_TRUE
);
1163 /* Limit read-ahead to a single page to prevent over-prefetching. */
1164 blk_queue_set_read_ahead(zso
->zvo_queue
, 1);
1166 if (!zv
->zv_zso
->use_blk_mq
) {
1167 /* Disable write merging in favor of the ZIO pipeline. */
1168 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, zso
->zvo_queue
);
1171 /* Enable /proc/diskstats */
1172 blk_queue_flag_set(QUEUE_FLAG_IO_STAT
, zso
->zvo_queue
);
1174 zso
->zvo_queue
->queuedata
= zv
;
1176 zv
->zv_open_count
= 0;
1177 strlcpy(zv
->zv_name
, name
, MAXNAMELEN
);
1179 zfs_rangelock_init(&zv
->zv_rangelock
, NULL
, NULL
);
1180 rw_init(&zv
->zv_suspend_lock
, NULL
, RW_DEFAULT
, NULL
);
1182 zso
->zvo_disk
->major
= zvol_major
;
1183 zso
->zvo_disk
->events
= DISK_EVENT_MEDIA_CHANGE
;
1186 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1187 * This is accomplished by limiting the number of minors for the
1188 * device to one and explicitly disabling partition scanning.
1190 if (volmode
== ZFS_VOLMODE_DEV
) {
1191 zso
->zvo_disk
->minors
= 1;
1192 zso
->zvo_disk
->flags
&= ~ZFS_GENHD_FL_EXT_DEVT
;
1193 zso
->zvo_disk
->flags
|= ZFS_GENHD_FL_NO_PART
;
1196 zso
->zvo_disk
->first_minor
= (dev
& MINORMASK
);
1197 zso
->zvo_disk
->private_data
= zv
;
1198 snprintf(zso
->zvo_disk
->disk_name
, DISK_NAME_LEN
, "%s%d",
1199 ZVOL_DEV_NAME
, (dev
& MINORMASK
));
1204 kmem_free(zso
, sizeof (struct zvol_state_os
));
1205 kmem_free(zv
, sizeof (zvol_state_t
));
1210 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1211 * At this time, the structure is not opened by anyone, is taken off
1212 * the zvol_state_list, and has its private data set to NULL.
1213 * The zvol_state_lock is dropped.
1215 * This function may take many milliseconds to complete (e.g. we've seen
1216 * it take over 256ms), due to the calls to "blk_cleanup_queue" and
1217 * "del_gendisk". Thus, consumers need to be careful to account for this
1218 * latency when calling this function.
1221 zvol_os_free(zvol_state_t
*zv
)
1224 ASSERT(!RW_LOCK_HELD(&zv
->zv_suspend_lock
));
1225 ASSERT(!MUTEX_HELD(&zv
->zv_state_lock
));
1226 ASSERT0(zv
->zv_open_count
);
1227 ASSERT3P(zv
->zv_zso
->zvo_disk
->private_data
, ==, NULL
);
1229 rw_destroy(&zv
->zv_suspend_lock
);
1230 zfs_rangelock_fini(&zv
->zv_rangelock
);
1232 del_gendisk(zv
->zv_zso
->zvo_disk
);
1233 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
1234 defined(HAVE_BLK_ALLOC_DISK)
1235 #if defined(HAVE_BLK_CLEANUP_DISK)
1236 blk_cleanup_disk(zv
->zv_zso
->zvo_disk
);
1238 put_disk(zv
->zv_zso
->zvo_disk
);
1241 blk_cleanup_queue(zv
->zv_zso
->zvo_queue
);
1242 put_disk(zv
->zv_zso
->zvo_disk
);
1246 if (zv
->zv_zso
->use_blk_mq
)
1247 blk_mq_free_tag_set(&zv
->zv_zso
->tag_set
);
1250 ida_simple_remove(&zvol_ida
,
1251 MINOR(zv
->zv_zso
->zvo_dev
) >> ZVOL_MINOR_BITS
);
1253 mutex_destroy(&zv
->zv_state_lock
);
1254 dataset_kstats_destroy(&zv
->zv_kstat
);
1256 kmem_free(zv
->zv_zso
, sizeof (struct zvol_state_os
));
1257 kmem_free(zv
, sizeof (zvol_state_t
));
1261 zvol_wait_close(zvol_state_t
*zv
)
1266 * Create a block device minor node and setup the linkage between it
1267 * and the specified volume. Once this function returns the block
1268 * device is live and ready for use.
1271 zvol_os_create_minor(const char *name
)
1275 dmu_object_info_t
*doi
;
1281 uint64_t hash
= zvol_name_hash(name
);
1283 if (zvol_inhibit_dev
)
1286 idx
= ida_simple_get(&zvol_ida
, 0, 0, kmem_flags_convert(KM_SLEEP
));
1288 return (SET_ERROR(-idx
));
1289 minor
= idx
<< ZVOL_MINOR_BITS
;
1291 zv
= zvol_find_by_name_hash(name
, hash
, RW_NONE
);
1293 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
1294 mutex_exit(&zv
->zv_state_lock
);
1295 ida_simple_remove(&zvol_ida
, idx
);
1296 return (SET_ERROR(EEXIST
));
1299 doi
= kmem_alloc(sizeof (dmu_object_info_t
), KM_SLEEP
);
1301 error
= dmu_objset_own(name
, DMU_OST_ZVOL
, B_TRUE
, B_TRUE
, FTAG
, &os
);
1305 error
= dmu_object_info(os
, ZVOL_OBJ
, doi
);
1307 goto out_dmu_objset_disown
;
1309 error
= zap_lookup(os
, ZVOL_ZAP_OBJ
, "size", 8, 1, &volsize
);
1311 goto out_dmu_objset_disown
;
1313 zv
= zvol_alloc(MKDEV(zvol_major
, minor
), name
);
1315 error
= SET_ERROR(EAGAIN
);
1316 goto out_dmu_objset_disown
;
1320 if (dmu_objset_is_snapshot(os
))
1321 zv
->zv_flags
|= ZVOL_RDONLY
;
1323 zv
->zv_volblocksize
= doi
->doi_data_block_size
;
1324 zv
->zv_volsize
= volsize
;
1327 set_capacity(zv
->zv_zso
->zvo_disk
, zv
->zv_volsize
>> 9);
1329 blk_queue_max_hw_sectors(zv
->zv_zso
->zvo_queue
,
1330 (DMU_MAX_ACCESS
/ 4) >> 9);
1332 if (zv
->zv_zso
->use_blk_mq
) {
1334 * IO requests can be really big (1MB). When an IO request
1335 * comes in, it is passed off to zvol_read() or zvol_write()
1336 * in a new thread, where it is chunked up into 'volblocksize'
1337 * sized pieces and processed. So for example, if the request
1338 * is a 1MB write and your volblocksize is 128k, one zvol_write
1339 * thread will take that request and sequentially do ten 128k
1340 * IOs. This is due to the fact that the thread needs to lock
1341 * each volblocksize sized block. So you might be wondering:
1342 * "instead of passing the whole 1MB request to one thread,
1343 * why not pass ten individual 128k chunks to ten threads and
1344 * process the whole write in parallel?" The short answer is
1345 * that there's a sweet spot number of chunks that balances
1346 * the greater parallelism with the added overhead of more
1347 * threads. The sweet spot can be different depending on if you
1348 * have a read or write heavy workload. Writes typically want
1349 * high chunk counts while reads typically want lower ones. On
1350 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1351 * configuration, with volblocksize=8k, the sweet spot for good
1352 * sequential reads and writes was at 8 chunks.
1356 * Below we tell the kernel how big we want our requests
1357 * to be. You would think that blk_queue_io_opt() would be
1358 * used to do this since it is used to "set optimal request
1359 * size for the queue", but that doesn't seem to do
1360 * anything - the kernel still gives you huge requests
1361 * with tons of little PAGE_SIZE segments contained within it.
1363 * Knowing that the kernel will just give you PAGE_SIZE segments
1364 * no matter what, you can say "ok, I want PAGE_SIZE byte
1365 * segments, and I want 'N' of them per request", where N is
1366 * the correct number of segments for the volblocksize and
1367 * number of chunks you want.
1370 if (zvol_blk_mq_blocks_per_thread
!= 0) {
1371 unsigned int chunks
;
1372 chunks
= MIN(zvol_blk_mq_blocks_per_thread
, UINT16_MAX
);
1374 blk_queue_max_segment_size(zv
->zv_zso
->zvo_queue
,
1376 blk_queue_max_segments(zv
->zv_zso
->zvo_queue
,
1377 (zv
->zv_volblocksize
* chunks
) / PAGE_SIZE
);
1380 * Special case: zvol_blk_mq_blocks_per_thread = 0
1381 * Max everything out.
1383 blk_queue_max_segments(zv
->zv_zso
->zvo_queue
,
1385 blk_queue_max_segment_size(zv
->zv_zso
->zvo_queue
,
1390 blk_queue_max_segments(zv
->zv_zso
->zvo_queue
, UINT16_MAX
);
1391 blk_queue_max_segment_size(zv
->zv_zso
->zvo_queue
, UINT_MAX
);
1394 blk_queue_physical_block_size(zv
->zv_zso
->zvo_queue
,
1395 zv
->zv_volblocksize
);
1396 blk_queue_io_opt(zv
->zv_zso
->zvo_queue
, zv
->zv_volblocksize
);
1397 blk_queue_max_discard_sectors(zv
->zv_zso
->zvo_queue
,
1398 (zvol_max_discard_blocks
* zv
->zv_volblocksize
) >> 9);
1399 blk_queue_discard_granularity(zv
->zv_zso
->zvo_queue
,
1400 zv
->zv_volblocksize
);
1401 #ifdef QUEUE_FLAG_DISCARD
1402 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, zv
->zv_zso
->zvo_queue
);
1404 #ifdef QUEUE_FLAG_NONROT
1405 blk_queue_flag_set(QUEUE_FLAG_NONROT
, zv
->zv_zso
->zvo_queue
);
1407 #ifdef QUEUE_FLAG_ADD_RANDOM
1408 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM
, zv
->zv_zso
->zvo_queue
);
1410 /* This flag was introduced in kernel version 4.12. */
1411 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1412 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH
, zv
->zv_zso
->zvo_queue
);
1415 ASSERT3P(zv
->zv_kstat
.dk_kstats
, ==, NULL
);
1416 error
= dataset_kstats_create(&zv
->zv_kstat
, zv
->zv_objset
);
1418 goto out_dmu_objset_disown
;
1419 ASSERT3P(zv
->zv_zilog
, ==, NULL
);
1420 zv
->zv_zilog
= zil_open(os
, zvol_get_data
, &zv
->zv_kstat
.dk_zil_sums
);
1421 if (spa_writeable(dmu_objset_spa(os
))) {
1422 if (zil_replay_disable
)
1423 zil_destroy(zv
->zv_zilog
, B_FALSE
);
1425 zil_replay(os
, zv
, zvol_replay_vector
);
1427 zil_close(zv
->zv_zilog
);
1428 zv
->zv_zilog
= NULL
;
1431 * When udev detects the addition of the device it will immediately
1432 * invoke blkid(8) to determine the type of content on the device.
1433 * Prefetching the blocks commonly scanned by blkid(8) will speed
1436 len
= MIN(zvol_prefetch_bytes
, SPA_MAXBLOCKSIZE
);
1438 dmu_prefetch(os
, ZVOL_OBJ
, 0, 0, len
, ZIO_PRIORITY_SYNC_READ
);
1439 dmu_prefetch(os
, ZVOL_OBJ
, 0, volsize
- len
, len
,
1440 ZIO_PRIORITY_SYNC_READ
);
1443 zv
->zv_objset
= NULL
;
1444 out_dmu_objset_disown
:
1445 dmu_objset_disown(os
, B_TRUE
, FTAG
);
1447 kmem_free(doi
, sizeof (dmu_object_info_t
));
1450 * Keep in mind that once add_disk() is called, the zvol is
1451 * announced to the world, and zvol_open()/zvol_release() can
1452 * be called at any time. Incidentally, add_disk() itself calls
1453 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1457 rw_enter(&zvol_state_lock
, RW_WRITER
);
1459 rw_exit(&zvol_state_lock
);
1460 #ifdef HAVE_ADD_DISK_RET
1461 error
= add_disk(zv
->zv_zso
->zvo_disk
);
1463 add_disk(zv
->zv_zso
->zvo_disk
);
1466 ida_simple_remove(&zvol_ida
, idx
);
1473 zvol_os_rename_minor(zvol_state_t
*zv
, const char *newname
)
1475 int readonly
= get_disk_ro(zv
->zv_zso
->zvo_disk
);
1477 ASSERT(RW_LOCK_HELD(&zvol_state_lock
));
1478 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
1480 strlcpy(zv
->zv_name
, newname
, sizeof (zv
->zv_name
));
1482 /* move to new hashtable entry */
1483 zv
->zv_hash
= zvol_name_hash(zv
->zv_name
);
1484 hlist_del(&zv
->zv_hlink
);
1485 hlist_add_head(&zv
->zv_hlink
, ZVOL_HT_HEAD(zv
->zv_hash
));
1488 * The block device's read-only state is briefly changed causing
1489 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1490 * the name change and fixes the symlinks. This does not change
1491 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1492 * changes. This would normally be done using kobject_uevent() but
1493 * that is a GPL-only symbol which is why we need this workaround.
1495 set_disk_ro(zv
->zv_zso
->zvo_disk
, !readonly
);
1496 set_disk_ro(zv
->zv_zso
->zvo_disk
, readonly
);
1500 zvol_os_set_disk_ro(zvol_state_t
*zv
, int flags
)
1503 set_disk_ro(zv
->zv_zso
->zvo_disk
, flags
);
1507 zvol_os_set_capacity(zvol_state_t
*zv
, uint64_t capacity
)
1510 set_capacity(zv
->zv_zso
->zvo_disk
, capacity
);
1519 * zvol_threads is the module param the user passes in.
1521 * zvol_actual_threads is what we use internally, since the user can
1522 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
1524 static unsigned int zvol_actual_threads
;
1526 if (zvol_threads
== 0) {
1528 * See dde9380a1 for why 32 was chosen here. This should
1529 * probably be refined to be some multiple of the number
1532 zvol_actual_threads
= MAX(num_online_cpus(), 32);
1534 zvol_actual_threads
= MIN(MAX(zvol_threads
, 1), 1024);
1537 error
= register_blkdev(zvol_major
, ZVOL_DRIVER
);
1539 printk(KERN_INFO
"ZFS: register_blkdev() failed %d\n", error
);
1544 if (zvol_blk_mq_queue_depth
== 0) {
1545 zvol_actual_blk_mq_queue_depth
= BLKDEV_DEFAULT_RQ
;
1547 zvol_actual_blk_mq_queue_depth
=
1548 MAX(zvol_blk_mq_queue_depth
, BLKDEV_MIN_RQ
);
1551 if (zvol_blk_mq_threads
== 0) {
1552 zvol_blk_mq_actual_threads
= num_online_cpus();
1554 zvol_blk_mq_actual_threads
= MIN(MAX(zvol_blk_mq_threads
, 1),
1558 zvol_taskq
= taskq_create(ZVOL_DRIVER
, zvol_actual_threads
, maxclsyspri
,
1559 zvol_actual_threads
, INT_MAX
, TASKQ_PREPOPULATE
| TASKQ_DYNAMIC
);
1560 if (zvol_taskq
== NULL
) {
1561 unregister_blkdev(zvol_major
, ZVOL_DRIVER
);
1566 ida_init(&zvol_ida
);
1574 unregister_blkdev(zvol_major
, ZVOL_DRIVER
);
1575 taskq_destroy(zvol_taskq
);
1576 ida_destroy(&zvol_ida
);
1580 module_param(zvol_inhibit_dev
, uint
, 0644);
1581 MODULE_PARM_DESC(zvol_inhibit_dev
, "Do not create zvol device nodes");
1583 module_param(zvol_major
, uint
, 0444);
1584 MODULE_PARM_DESC(zvol_major
, "Major number for zvol device");
1586 module_param(zvol_threads
, uint
, 0444);
1587 MODULE_PARM_DESC(zvol_threads
, "Number of threads to handle I/O requests. Set"
1588 "to 0 to use all active CPUs");
1590 module_param(zvol_request_sync
, uint
, 0644);
1591 MODULE_PARM_DESC(zvol_request_sync
, "Synchronously handle bio requests");
1593 module_param(zvol_max_discard_blocks
, ulong
, 0444);
1594 MODULE_PARM_DESC(zvol_max_discard_blocks
, "Max number of blocks to discard");
1596 module_param(zvol_prefetch_bytes
, uint
, 0644);
1597 MODULE_PARM_DESC(zvol_prefetch_bytes
, "Prefetch N bytes at zvol start+end");
1599 module_param(zvol_volmode
, uint
, 0644);
1600 MODULE_PARM_DESC(zvol_volmode
, "Default volmode property value");
1603 module_param(zvol_blk_mq_queue_depth
, uint
, 0644);
1604 MODULE_PARM_DESC(zvol_blk_mq_queue_depth
, "Default blk-mq queue depth");
1606 module_param(zvol_use_blk_mq
, uint
, 0644);
1607 MODULE_PARM_DESC(zvol_use_blk_mq
, "Use the blk-mq API for zvols");
1609 module_param(zvol_blk_mq_blocks_per_thread
, uint
, 0644);
1610 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread
,
1611 "Process volblocksize blocks per thread");