2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
8 * This file is part of the SPL, Solaris Porting Layer.
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
24 #include <linux/percpu_compat.h>
26 #include <sys/kmem_cache.h>
27 #include <sys/taskq.h>
28 #include <sys/timer.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/prefetch.h>
36 * Within the scope of spl-kmem.c file the kmem_cache_* definitions
37 * are removed to allow access to the real Linux slab allocator.
39 #undef kmem_cache_destroy
40 #undef kmem_cache_create
41 #undef kmem_cache_alloc
42 #undef kmem_cache_free
46 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
47 * with smp_mb__{before,after}_atomic() because they were redundant. This is
48 * only used inside our SLAB allocator, so we implement an internal wrapper
49 * here to give us smp_mb__{before,after}_atomic() on older kernels.
51 #ifndef smp_mb__before_atomic
52 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
55 #ifndef smp_mb__after_atomic
56 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
61 * Cache magazines are an optimization designed to minimize the cost of
62 * allocating memory. They do this by keeping a per-cpu cache of recently
63 * freed objects, which can then be reallocated without taking a lock. This
64 * can improve performance on highly contended caches. However, because
65 * objects in magazines will prevent otherwise empty slabs from being
66 * immediately released this may not be ideal for low memory machines.
68 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
69 * magazine size. When this value is set to 0 the magazine size will be
70 * automatically determined based on the object size. Otherwise magazines
71 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
72 * may never be entirely disabled in this implementation.
74 static unsigned int spl_kmem_cache_magazine_size
= 0;
75 module_param(spl_kmem_cache_magazine_size
, uint
, 0444);
76 MODULE_PARM_DESC(spl_kmem_cache_magazine_size
,
77 "Default magazine size (2-256), set automatically (0)");
80 * The default behavior is to report the number of objects remaining in the
81 * cache. This allows the Linux VM to repeatedly reclaim objects from the
82 * cache when memory is low satisfy other memory allocations. Alternately,
83 * setting this value to KMC_RECLAIM_ONCE limits how aggressively the cache
84 * is reclaimed. This may increase the likelihood of out of memory events.
86 static unsigned int spl_kmem_cache_reclaim
= 0 /* KMC_RECLAIM_ONCE */;
87 module_param(spl_kmem_cache_reclaim
, uint
, 0644);
88 MODULE_PARM_DESC(spl_kmem_cache_reclaim
, "Single reclaim pass (0x1)");
90 static unsigned int spl_kmem_cache_obj_per_slab
= SPL_KMEM_CACHE_OBJ_PER_SLAB
;
91 module_param(spl_kmem_cache_obj_per_slab
, uint
, 0644);
92 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab
, "Number of objects per slab");
94 static unsigned int spl_kmem_cache_max_size
= SPL_KMEM_CACHE_MAX_SIZE
;
95 module_param(spl_kmem_cache_max_size
, uint
, 0644);
96 MODULE_PARM_DESC(spl_kmem_cache_max_size
, "Maximum size of slab in MB");
99 * For small objects the Linux slab allocator should be used to make the most
100 * efficient use of the memory. However, large objects are not supported by
101 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
102 * of 16K was determined to be optimal for architectures using 4K pages and
103 * to also work well on architecutres using larger 64K page sizes.
105 static unsigned int spl_kmem_cache_slab_limit
= 16384;
106 module_param(spl_kmem_cache_slab_limit
, uint
, 0644);
107 MODULE_PARM_DESC(spl_kmem_cache_slab_limit
,
108 "Objects less than N bytes use the Linux slab");
111 * The number of threads available to allocate new slabs for caches. This
112 * should not need to be tuned but it is available for performance analysis.
114 static unsigned int spl_kmem_cache_kmem_threads
= 4;
115 module_param(spl_kmem_cache_kmem_threads
, uint
, 0444);
116 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads
,
117 "Number of spl_kmem_cache threads");
121 * Slab allocation interfaces
123 * While the Linux slab implementation was inspired by the Solaris
124 * implementation I cannot use it to emulate the Solaris APIs. I
125 * require two features which are not provided by the Linux slab.
127 * 1) Constructors AND destructors. Recent versions of the Linux
128 * kernel have removed support for destructors. This is a deal
129 * breaker for the SPL which contains particularly expensive
130 * initializers for mutex's, condition variables, etc. We also
131 * require a minimal level of cleanup for these data types unlike
132 * many Linux data types which do need to be explicitly destroyed.
134 * 2) Virtual address space backed slab. Callers of the Solaris slab
135 * expect it to work well for both small are very large allocations.
136 * Because of memory fragmentation the Linux slab which is backed
137 * by kmalloc'ed memory performs very badly when confronted with
138 * large numbers of large allocations. Basing the slab on the
139 * virtual address space removes the need for contiguous pages
140 * and greatly improve performance for large allocations.
142 * For these reasons, the SPL has its own slab implementation with
143 * the needed features. It is not as highly optimized as either the
144 * Solaris or Linux slabs, but it should get me most of what is
145 * needed until it can be optimized or obsoleted by another approach.
147 * One serious concern I do have about this method is the relatively
148 * small virtual address space on 32bit arches. This will seriously
149 * constrain the size of the slab caches and their performance.
152 struct list_head spl_kmem_cache_list
; /* List of caches */
153 struct rw_semaphore spl_kmem_cache_sem
; /* Cache list lock */
154 static taskq_t
*spl_kmem_cache_taskq
; /* Task queue for aging / reclaim */
156 static void spl_cache_shrink(spl_kmem_cache_t
*skc
, void *obj
);
159 kv_alloc(spl_kmem_cache_t
*skc
, int size
, int flags
)
161 gfp_t lflags
= kmem_flags_convert(flags
);
164 ptr
= spl_vmalloc(size
, lflags
| __GFP_HIGHMEM
);
166 /* Resulting allocated memory will be page aligned */
167 ASSERT(IS_P2ALIGNED(ptr
, PAGE_SIZE
));
173 kv_free(spl_kmem_cache_t
*skc
, void *ptr
, int size
)
175 ASSERT(IS_P2ALIGNED(ptr
, PAGE_SIZE
));
178 * The Linux direct reclaim path uses this out of band value to
179 * determine if forward progress is being made. Normally this is
180 * incremented by kmem_freepages() which is part of the various
181 * Linux slab implementations. However, since we are using none
182 * of that infrastructure we are responsible for incrementing it.
184 if (current
->reclaim_state
)
185 #ifdef HAVE_RECLAIM_STATE_RECLAIMED
186 current
->reclaim_state
->reclaimed
+= size
>> PAGE_SHIFT
;
188 current
->reclaim_state
->reclaimed_slab
+= size
>> PAGE_SHIFT
;
194 * Required space for each aligned sks.
196 static inline uint32_t
197 spl_sks_size(spl_kmem_cache_t
*skc
)
199 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t
),
200 skc
->skc_obj_align
, uint32_t));
204 * Required space for each aligned object.
206 static inline uint32_t
207 spl_obj_size(spl_kmem_cache_t
*skc
)
209 uint32_t align
= skc
->skc_obj_align
;
211 return (P2ROUNDUP_TYPED(skc
->skc_obj_size
, align
, uint32_t) +
212 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t
), align
, uint32_t));
216 spl_kmem_cache_inuse(kmem_cache_t
*cache
)
218 return (cache
->skc_obj_total
);
220 EXPORT_SYMBOL(spl_kmem_cache_inuse
);
223 spl_kmem_cache_entry_size(kmem_cache_t
*cache
)
225 return (cache
->skc_obj_size
);
227 EXPORT_SYMBOL(spl_kmem_cache_entry_size
);
230 * Lookup the spl_kmem_object_t for an object given that object.
232 static inline spl_kmem_obj_t
*
233 spl_sko_from_obj(spl_kmem_cache_t
*skc
, void *obj
)
235 return (obj
+ P2ROUNDUP_TYPED(skc
->skc_obj_size
,
236 skc
->skc_obj_align
, uint32_t));
240 * It's important that we pack the spl_kmem_obj_t structure and the
241 * actual objects in to one large address space to minimize the number
242 * of calls to the allocator. It is far better to do a few large
243 * allocations and then subdivide it ourselves. Now which allocator
244 * we use requires balancing a few trade offs.
246 * For small objects we use kmem_alloc() because as long as you are
247 * only requesting a small number of pages (ideally just one) its cheap.
248 * However, when you start requesting multiple pages with kmem_alloc()
249 * it gets increasingly expensive since it requires contiguous pages.
250 * For this reason we shift to vmem_alloc() for slabs of large objects
251 * which removes the need for contiguous pages. We do not use
252 * vmem_alloc() in all cases because there is significant locking
253 * overhead in __get_vm_area_node(). This function takes a single
254 * global lock when acquiring an available virtual address range which
255 * serializes all vmem_alloc()'s for all slab caches. Using slightly
256 * different allocation functions for small and large objects should
257 * give us the best of both worlds.
259 * +------------------------+
260 * | spl_kmem_slab_t --+-+ |
261 * | skc_obj_size <-+ | |
262 * | spl_kmem_obj_t | |
263 * | skc_obj_size <---+ |
264 * | spl_kmem_obj_t | |
266 * +------------------------+
268 static spl_kmem_slab_t
*
269 spl_slab_alloc(spl_kmem_cache_t
*skc
, int flags
)
271 spl_kmem_slab_t
*sks
;
275 base
= kv_alloc(skc
, skc
->skc_slab_size
, flags
);
279 sks
= (spl_kmem_slab_t
*)base
;
280 sks
->sks_magic
= SKS_MAGIC
;
281 sks
->sks_objs
= skc
->skc_slab_objs
;
282 sks
->sks_age
= jiffies
;
283 sks
->sks_cache
= skc
;
284 INIT_LIST_HEAD(&sks
->sks_list
);
285 INIT_LIST_HEAD(&sks
->sks_free_list
);
287 obj_size
= spl_obj_size(skc
);
289 for (int i
= 0; i
< sks
->sks_objs
; i
++) {
290 void *obj
= base
+ spl_sks_size(skc
) + (i
* obj_size
);
292 ASSERT(IS_P2ALIGNED(obj
, skc
->skc_obj_align
));
293 spl_kmem_obj_t
*sko
= spl_sko_from_obj(skc
, obj
);
295 sko
->sko_magic
= SKO_MAGIC
;
297 INIT_LIST_HEAD(&sko
->sko_list
);
298 list_add_tail(&sko
->sko_list
, &sks
->sks_free_list
);
305 * Remove a slab from complete or partial list, it must be called with
306 * the 'skc->skc_lock' held but the actual free must be performed
307 * outside the lock to prevent deadlocking on vmem addresses.
310 spl_slab_free(spl_kmem_slab_t
*sks
,
311 struct list_head
*sks_list
, struct list_head
*sko_list
)
313 spl_kmem_cache_t
*skc
;
315 ASSERT(sks
->sks_magic
== SKS_MAGIC
);
316 ASSERT(sks
->sks_ref
== 0);
318 skc
= sks
->sks_cache
;
319 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
322 * Update slab/objects counters in the cache, then remove the
323 * slab from the skc->skc_partial_list. Finally add the slab
324 * and all its objects in to the private work lists where the
325 * destructors will be called and the memory freed to the system.
327 skc
->skc_obj_total
-= sks
->sks_objs
;
328 skc
->skc_slab_total
--;
329 list_del(&sks
->sks_list
);
330 list_add(&sks
->sks_list
, sks_list
);
331 list_splice_init(&sks
->sks_free_list
, sko_list
);
335 * Reclaim empty slabs at the end of the partial list.
338 spl_slab_reclaim(spl_kmem_cache_t
*skc
)
340 spl_kmem_slab_t
*sks
= NULL
, *m
= NULL
;
341 spl_kmem_obj_t
*sko
= NULL
, *n
= NULL
;
346 * Empty slabs and objects must be moved to a private list so they
347 * can be safely freed outside the spin lock. All empty slabs are
348 * at the end of skc->skc_partial_list, therefore once a non-empty
349 * slab is found we can stop scanning.
351 spin_lock(&skc
->skc_lock
);
352 list_for_each_entry_safe_reverse(sks
, m
,
353 &skc
->skc_partial_list
, sks_list
) {
355 if (sks
->sks_ref
> 0)
358 spl_slab_free(sks
, &sks_list
, &sko_list
);
360 spin_unlock(&skc
->skc_lock
);
363 * The following two loops ensure all the object destructors are run,
364 * and the slabs themselves are freed. This is all done outside the
365 * skc->skc_lock since this allows the destructor to sleep, and
366 * allows us to perform a conditional reschedule when a freeing a
367 * large number of objects and slabs back to the system.
370 list_for_each_entry_safe(sko
, n
, &sko_list
, sko_list
) {
371 ASSERT(sko
->sko_magic
== SKO_MAGIC
);
374 list_for_each_entry_safe(sks
, m
, &sks_list
, sks_list
) {
375 ASSERT(sks
->sks_magic
== SKS_MAGIC
);
376 kv_free(skc
, sks
, skc
->skc_slab_size
);
380 static spl_kmem_emergency_t
*
381 spl_emergency_search(struct rb_root
*root
, void *obj
)
383 struct rb_node
*node
= root
->rb_node
;
384 spl_kmem_emergency_t
*ske
;
385 unsigned long address
= (unsigned long)obj
;
388 ske
= container_of(node
, spl_kmem_emergency_t
, ske_node
);
390 if (address
< ske
->ske_obj
)
391 node
= node
->rb_left
;
392 else if (address
> ske
->ske_obj
)
393 node
= node
->rb_right
;
402 spl_emergency_insert(struct rb_root
*root
, spl_kmem_emergency_t
*ske
)
404 struct rb_node
**new = &(root
->rb_node
), *parent
= NULL
;
405 spl_kmem_emergency_t
*ske_tmp
;
406 unsigned long address
= ske
->ske_obj
;
409 ske_tmp
= container_of(*new, spl_kmem_emergency_t
, ske_node
);
412 if (address
< ske_tmp
->ske_obj
)
413 new = &((*new)->rb_left
);
414 else if (address
> ske_tmp
->ske_obj
)
415 new = &((*new)->rb_right
);
420 rb_link_node(&ske
->ske_node
, parent
, new);
421 rb_insert_color(&ske
->ske_node
, root
);
427 * Allocate a single emergency object and track it in a red black tree.
430 spl_emergency_alloc(spl_kmem_cache_t
*skc
, int flags
, void **obj
)
432 gfp_t lflags
= kmem_flags_convert(flags
);
433 spl_kmem_emergency_t
*ske
;
434 int order
= get_order(skc
->skc_obj_size
);
437 /* Last chance use a partial slab if one now exists */
438 spin_lock(&skc
->skc_lock
);
439 empty
= list_empty(&skc
->skc_partial_list
);
440 spin_unlock(&skc
->skc_lock
);
444 ske
= kmalloc(sizeof (*ske
), lflags
);
448 ske
->ske_obj
= __get_free_pages(lflags
, order
);
449 if (ske
->ske_obj
== 0) {
454 spin_lock(&skc
->skc_lock
);
455 empty
= spl_emergency_insert(&skc
->skc_emergency_tree
, ske
);
457 skc
->skc_obj_total
++;
458 skc
->skc_obj_emergency
++;
459 if (skc
->skc_obj_emergency
> skc
->skc_obj_emergency_max
)
460 skc
->skc_obj_emergency_max
= skc
->skc_obj_emergency
;
462 spin_unlock(&skc
->skc_lock
);
464 if (unlikely(!empty
)) {
465 free_pages(ske
->ske_obj
, order
);
470 *obj
= (void *)ske
->ske_obj
;
476 * Locate the passed object in the red black tree and free it.
479 spl_emergency_free(spl_kmem_cache_t
*skc
, void *obj
)
481 spl_kmem_emergency_t
*ske
;
482 int order
= get_order(skc
->skc_obj_size
);
484 spin_lock(&skc
->skc_lock
);
485 ske
= spl_emergency_search(&skc
->skc_emergency_tree
, obj
);
487 rb_erase(&ske
->ske_node
, &skc
->skc_emergency_tree
);
488 skc
->skc_obj_emergency
--;
489 skc
->skc_obj_total
--;
491 spin_unlock(&skc
->skc_lock
);
496 free_pages(ske
->ske_obj
, order
);
503 * Release objects from the per-cpu magazine back to their slab. The flush
504 * argument contains the max number of entries to remove from the magazine.
507 spl_cache_flush(spl_kmem_cache_t
*skc
, spl_kmem_magazine_t
*skm
, int flush
)
509 spin_lock(&skc
->skc_lock
);
511 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
512 ASSERT(skm
->skm_magic
== SKM_MAGIC
);
514 int count
= MIN(flush
, skm
->skm_avail
);
515 for (int i
= 0; i
< count
; i
++)
516 spl_cache_shrink(skc
, skm
->skm_objs
[i
]);
518 skm
->skm_avail
-= count
;
519 memmove(skm
->skm_objs
, &(skm
->skm_objs
[count
]),
520 sizeof (void *) * skm
->skm_avail
);
522 spin_unlock(&skc
->skc_lock
);
526 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
527 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
528 * for very small objects we may end up with more than this so as not
529 * to waste space in the minimal allocation of a single page.
532 spl_slab_size(spl_kmem_cache_t
*skc
, uint32_t *objs
, uint32_t *size
)
534 uint32_t sks_size
, obj_size
, max_size
, tgt_size
, tgt_objs
;
536 sks_size
= spl_sks_size(skc
);
537 obj_size
= spl_obj_size(skc
);
538 max_size
= (spl_kmem_cache_max_size
* 1024 * 1024);
539 tgt_size
= (spl_kmem_cache_obj_per_slab
* obj_size
+ sks_size
);
541 if (tgt_size
<= max_size
) {
542 tgt_objs
= (tgt_size
- sks_size
) / obj_size
;
544 tgt_objs
= (max_size
- sks_size
) / obj_size
;
545 tgt_size
= (tgt_objs
* obj_size
) + sks_size
;
558 * Make a guess at reasonable per-cpu magazine size based on the size of
559 * each object and the cost of caching N of them in each magazine. Long
560 * term this should really adapt based on an observed usage heuristic.
563 spl_magazine_size(spl_kmem_cache_t
*skc
)
565 uint32_t obj_size
= spl_obj_size(skc
);
568 if (spl_kmem_cache_magazine_size
> 0)
569 return (MAX(MIN(spl_kmem_cache_magazine_size
, 256), 2));
571 /* Per-magazine sizes below assume a 4Kib page size */
572 if (obj_size
> (PAGE_SIZE
* 256))
573 size
= 4; /* Minimum 4Mib per-magazine */
574 else if (obj_size
> (PAGE_SIZE
* 32))
575 size
= 16; /* Minimum 2Mib per-magazine */
576 else if (obj_size
> (PAGE_SIZE
))
577 size
= 64; /* Minimum 256Kib per-magazine */
578 else if (obj_size
> (PAGE_SIZE
/ 4))
579 size
= 128; /* Minimum 128Kib per-magazine */
587 * Allocate a per-cpu magazine to associate with a specific core.
589 static spl_kmem_magazine_t
*
590 spl_magazine_alloc(spl_kmem_cache_t
*skc
, int cpu
)
592 spl_kmem_magazine_t
*skm
;
593 int size
= sizeof (spl_kmem_magazine_t
) +
594 sizeof (void *) * skc
->skc_mag_size
;
596 skm
= kmalloc_node(size
, GFP_KERNEL
, cpu_to_node(cpu
));
598 skm
->skm_magic
= SKM_MAGIC
;
600 skm
->skm_size
= skc
->skc_mag_size
;
601 skm
->skm_refill
= skc
->skc_mag_refill
;
602 skm
->skm_cache
= skc
;
610 * Free a per-cpu magazine associated with a specific core.
613 spl_magazine_free(spl_kmem_magazine_t
*skm
)
615 ASSERT(skm
->skm_magic
== SKM_MAGIC
);
616 ASSERT(skm
->skm_avail
== 0);
621 * Create all pre-cpu magazines of reasonable sizes.
624 spl_magazine_create(spl_kmem_cache_t
*skc
)
628 ASSERT((skc
->skc_flags
& KMC_SLAB
) == 0);
630 skc
->skc_mag
= kzalloc(sizeof (spl_kmem_magazine_t
*) *
631 num_possible_cpus(), kmem_flags_convert(KM_SLEEP
));
632 skc
->skc_mag_size
= spl_magazine_size(skc
);
633 skc
->skc_mag_refill
= (skc
->skc_mag_size
+ 1) / 2;
635 for_each_possible_cpu(i
) {
636 skc
->skc_mag
[i
] = spl_magazine_alloc(skc
, i
);
637 if (!skc
->skc_mag
[i
]) {
638 for (i
--; i
>= 0; i
--)
639 spl_magazine_free(skc
->skc_mag
[i
]);
650 * Destroy all pre-cpu magazines.
653 spl_magazine_destroy(spl_kmem_cache_t
*skc
)
655 spl_kmem_magazine_t
*skm
;
658 ASSERT((skc
->skc_flags
& KMC_SLAB
) == 0);
660 for_each_possible_cpu(i
) {
661 skm
= skc
->skc_mag
[i
];
662 spl_cache_flush(skc
, skm
, skm
->skm_avail
);
663 spl_magazine_free(skm
);
670 * Create a object cache based on the following arguments:
672 * size cache object size
673 * align cache object alignment
674 * ctor cache object constructor
675 * dtor cache object destructor
676 * reclaim cache object reclaim
677 * priv cache private data for ctor/dtor/reclaim
678 * vmp unused must be NULL
680 * KMC_KVMEM Force kvmem backed SPL cache
681 * KMC_SLAB Force Linux slab backed cache
682 * KMC_NODEBUG Disable debugging (unsupported)
685 spl_kmem_cache_create(const char *name
, size_t size
, size_t align
,
686 spl_kmem_ctor_t ctor
, spl_kmem_dtor_t dtor
, void *reclaim
,
687 void *priv
, void *vmp
, int flags
)
689 gfp_t lflags
= kmem_flags_convert(KM_SLEEP
);
690 spl_kmem_cache_t
*skc
;
697 ASSERT(reclaim
== NULL
);
701 skc
= kzalloc(sizeof (*skc
), lflags
);
705 skc
->skc_magic
= SKC_MAGIC
;
706 skc
->skc_name_size
= strlen(name
) + 1;
707 skc
->skc_name
= kmalloc(skc
->skc_name_size
, lflags
);
708 if (skc
->skc_name
== NULL
) {
712 strlcpy(skc
->skc_name
, name
, skc
->skc_name_size
);
714 skc
->skc_ctor
= ctor
;
715 skc
->skc_dtor
= dtor
;
716 skc
->skc_private
= priv
;
718 skc
->skc_linux_cache
= NULL
;
719 skc
->skc_flags
= flags
;
720 skc
->skc_obj_size
= size
;
721 skc
->skc_obj_align
= SPL_KMEM_CACHE_ALIGN
;
722 atomic_set(&skc
->skc_ref
, 0);
724 INIT_LIST_HEAD(&skc
->skc_list
);
725 INIT_LIST_HEAD(&skc
->skc_complete_list
);
726 INIT_LIST_HEAD(&skc
->skc_partial_list
);
727 skc
->skc_emergency_tree
= RB_ROOT
;
728 spin_lock_init(&skc
->skc_lock
);
729 init_waitqueue_head(&skc
->skc_waitq
);
730 skc
->skc_slab_fail
= 0;
731 skc
->skc_slab_create
= 0;
732 skc
->skc_slab_destroy
= 0;
733 skc
->skc_slab_total
= 0;
734 skc
->skc_slab_alloc
= 0;
735 skc
->skc_slab_max
= 0;
736 skc
->skc_obj_total
= 0;
737 skc
->skc_obj_alloc
= 0;
738 skc
->skc_obj_max
= 0;
739 skc
->skc_obj_deadlock
= 0;
740 skc
->skc_obj_emergency
= 0;
741 skc
->skc_obj_emergency_max
= 0;
743 rc
= percpu_counter_init_common(&skc
->skc_linux_alloc
, 0,
751 * Verify the requested alignment restriction is sane.
755 VERIFY3U(align
, >=, SPL_KMEM_CACHE_ALIGN
);
756 VERIFY3U(align
, <=, PAGE_SIZE
);
757 skc
->skc_obj_align
= align
;
761 * When no specific type of slab is requested (kmem, vmem, or
762 * linuxslab) then select a cache type based on the object size
763 * and default tunables.
765 if (!(skc
->skc_flags
& (KMC_SLAB
| KMC_KVMEM
))) {
766 if (spl_kmem_cache_slab_limit
&&
767 size
<= (size_t)spl_kmem_cache_slab_limit
) {
769 * Objects smaller than spl_kmem_cache_slab_limit can
770 * use the Linux slab for better space-efficiency.
772 skc
->skc_flags
|= KMC_SLAB
;
775 * All other objects are considered large and are
776 * placed on kvmem backed slabs.
778 skc
->skc_flags
|= KMC_KVMEM
;
783 * Given the type of slab allocate the required resources.
785 if (skc
->skc_flags
& KMC_KVMEM
) {
786 rc
= spl_slab_size(skc
,
787 &skc
->skc_slab_objs
, &skc
->skc_slab_size
);
791 rc
= spl_magazine_create(skc
);
795 unsigned long slabflags
= 0;
797 if (size
> (SPL_MAX_KMEM_ORDER_NR_PAGES
* PAGE_SIZE
))
800 #if defined(SLAB_USERCOPY)
802 * Required for PAX-enabled kernels if the slab is to be
803 * used for copying between user and kernel space.
805 slabflags
|= SLAB_USERCOPY
;
808 #if defined(HAVE_KMEM_CACHE_CREATE_USERCOPY)
810 * Newer grsec patchset uses kmem_cache_create_usercopy()
811 * instead of SLAB_USERCOPY flag
813 skc
->skc_linux_cache
= kmem_cache_create_usercopy(
814 skc
->skc_name
, size
, align
, slabflags
, 0, size
, NULL
);
816 skc
->skc_linux_cache
= kmem_cache_create(
817 skc
->skc_name
, size
, align
, slabflags
, NULL
);
819 if (skc
->skc_linux_cache
== NULL
)
823 down_write(&spl_kmem_cache_sem
);
824 list_add_tail(&skc
->skc_list
, &spl_kmem_cache_list
);
825 up_write(&spl_kmem_cache_sem
);
829 kfree(skc
->skc_name
);
830 percpu_counter_destroy(&skc
->skc_linux_alloc
);
834 EXPORT_SYMBOL(spl_kmem_cache_create
);
837 * Register a move callback for cache defragmentation.
838 * XXX: Unimplemented but harmless to stub out for now.
841 spl_kmem_cache_set_move(spl_kmem_cache_t
*skc
,
842 kmem_cbrc_t (move
)(void *, void *, size_t, void *))
844 ASSERT(move
!= NULL
);
846 EXPORT_SYMBOL(spl_kmem_cache_set_move
);
849 * Destroy a cache and all objects associated with the cache.
852 spl_kmem_cache_destroy(spl_kmem_cache_t
*skc
)
854 DECLARE_WAIT_QUEUE_HEAD(wq
);
857 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
858 ASSERT(skc
->skc_flags
& (KMC_KVMEM
| KMC_SLAB
));
860 down_write(&spl_kmem_cache_sem
);
861 list_del_init(&skc
->skc_list
);
862 up_write(&spl_kmem_cache_sem
);
864 /* Cancel any and wait for any pending delayed tasks */
865 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY
, &skc
->skc_flags
));
867 spin_lock(&skc
->skc_lock
);
868 id
= skc
->skc_taskqid
;
869 spin_unlock(&skc
->skc_lock
);
871 taskq_cancel_id(spl_kmem_cache_taskq
, id
);
874 * Wait until all current callers complete, this is mainly
875 * to catch the case where a low memory situation triggers a
876 * cache reaping action which races with this destroy.
878 wait_event(wq
, atomic_read(&skc
->skc_ref
) == 0);
880 if (skc
->skc_flags
& KMC_KVMEM
) {
881 spl_magazine_destroy(skc
);
882 spl_slab_reclaim(skc
);
884 ASSERT(skc
->skc_flags
& KMC_SLAB
);
885 kmem_cache_destroy(skc
->skc_linux_cache
);
888 spin_lock(&skc
->skc_lock
);
891 * Validate there are no objects in use and free all the
892 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
894 ASSERT3U(skc
->skc_slab_alloc
, ==, 0);
895 ASSERT3U(skc
->skc_obj_alloc
, ==, 0);
896 ASSERT3U(skc
->skc_slab_total
, ==, 0);
897 ASSERT3U(skc
->skc_obj_total
, ==, 0);
898 ASSERT3U(skc
->skc_obj_emergency
, ==, 0);
899 ASSERT(list_empty(&skc
->skc_complete_list
));
901 ASSERT3U(percpu_counter_sum(&skc
->skc_linux_alloc
), ==, 0);
902 percpu_counter_destroy(&skc
->skc_linux_alloc
);
904 spin_unlock(&skc
->skc_lock
);
906 kfree(skc
->skc_name
);
909 EXPORT_SYMBOL(spl_kmem_cache_destroy
);
912 * Allocate an object from a slab attached to the cache. This is used to
913 * repopulate the per-cpu magazine caches in batches when they run low.
916 spl_cache_obj(spl_kmem_cache_t
*skc
, spl_kmem_slab_t
*sks
)
920 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
921 ASSERT(sks
->sks_magic
== SKS_MAGIC
);
923 sko
= list_entry(sks
->sks_free_list
.next
, spl_kmem_obj_t
, sko_list
);
924 ASSERT(sko
->sko_magic
== SKO_MAGIC
);
925 ASSERT(sko
->sko_addr
!= NULL
);
927 /* Remove from sks_free_list */
928 list_del_init(&sko
->sko_list
);
930 sks
->sks_age
= jiffies
;
932 skc
->skc_obj_alloc
++;
934 /* Track max obj usage statistics */
935 if (skc
->skc_obj_alloc
> skc
->skc_obj_max
)
936 skc
->skc_obj_max
= skc
->skc_obj_alloc
;
938 /* Track max slab usage statistics */
939 if (sks
->sks_ref
== 1) {
940 skc
->skc_slab_alloc
++;
942 if (skc
->skc_slab_alloc
> skc
->skc_slab_max
)
943 skc
->skc_slab_max
= skc
->skc_slab_alloc
;
946 return (sko
->sko_addr
);
950 * Generic slab allocation function to run by the global work queues.
951 * It is responsible for allocating a new slab, linking it in to the list
952 * of partial slabs, and then waking any waiters.
955 __spl_cache_grow(spl_kmem_cache_t
*skc
, int flags
)
957 spl_kmem_slab_t
*sks
;
959 fstrans_cookie_t cookie
= spl_fstrans_mark();
960 sks
= spl_slab_alloc(skc
, flags
);
961 spl_fstrans_unmark(cookie
);
963 spin_lock(&skc
->skc_lock
);
965 skc
->skc_slab_total
++;
966 skc
->skc_obj_total
+= sks
->sks_objs
;
967 list_add_tail(&sks
->sks_list
, &skc
->skc_partial_list
);
969 smp_mb__before_atomic();
970 clear_bit(KMC_BIT_DEADLOCKED
, &skc
->skc_flags
);
971 smp_mb__after_atomic();
973 spin_unlock(&skc
->skc_lock
);
975 return (sks
== NULL
? -ENOMEM
: 0);
979 spl_cache_grow_work(void *data
)
981 spl_kmem_alloc_t
*ska
= (spl_kmem_alloc_t
*)data
;
982 spl_kmem_cache_t
*skc
= ska
->ska_cache
;
984 int error
= __spl_cache_grow(skc
, ska
->ska_flags
);
986 atomic_dec(&skc
->skc_ref
);
987 smp_mb__before_atomic();
988 clear_bit(KMC_BIT_GROWING
, &skc
->skc_flags
);
989 smp_mb__after_atomic();
991 wake_up_all(&skc
->skc_waitq
);
997 * Returns non-zero when a new slab should be available.
1000 spl_cache_grow_wait(spl_kmem_cache_t
*skc
)
1002 return (!test_bit(KMC_BIT_GROWING
, &skc
->skc_flags
));
1006 * No available objects on any slabs, create a new slab. Note that this
1007 * functionality is disabled for KMC_SLAB caches which are backed by the
1011 spl_cache_grow(spl_kmem_cache_t
*skc
, int flags
, void **obj
)
1013 int remaining
, rc
= 0;
1015 ASSERT0(flags
& ~KM_PUBLIC_MASK
);
1016 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1017 ASSERT((skc
->skc_flags
& KMC_SLAB
) == 0);
1022 * Since we can't sleep attempt an emergency allocation to satisfy
1023 * the request. The only alterative is to fail the allocation but
1024 * it's preferable try. The use of KM_NOSLEEP is expected to be rare.
1026 if (flags
& KM_NOSLEEP
)
1027 return (spl_emergency_alloc(skc
, flags
, obj
));
1032 * Before allocating a new slab wait for any reaping to complete and
1033 * then return so the local magazine can be rechecked for new objects.
1035 if (test_bit(KMC_BIT_REAPING
, &skc
->skc_flags
)) {
1036 rc
= spl_wait_on_bit(&skc
->skc_flags
, KMC_BIT_REAPING
,
1037 TASK_UNINTERRUPTIBLE
);
1038 return (rc
? rc
: -EAGAIN
);
1042 * Note: It would be nice to reduce the overhead of context switch
1043 * and improve NUMA locality, by trying to allocate a new slab in the
1044 * current process context with KM_NOSLEEP flag.
1046 * However, this can't be applied to vmem/kvmem due to a bug that
1047 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1051 * This is handled by dispatching a work request to the global work
1052 * queue. This allows us to asynchronously allocate a new slab while
1053 * retaining the ability to safely fall back to a smaller synchronous
1054 * allocations to ensure forward progress is always maintained.
1056 if (test_and_set_bit(KMC_BIT_GROWING
, &skc
->skc_flags
) == 0) {
1057 spl_kmem_alloc_t
*ska
;
1059 ska
= kmalloc(sizeof (*ska
), kmem_flags_convert(flags
));
1061 clear_bit_unlock(KMC_BIT_GROWING
, &skc
->skc_flags
);
1062 smp_mb__after_atomic();
1063 wake_up_all(&skc
->skc_waitq
);
1067 atomic_inc(&skc
->skc_ref
);
1068 ska
->ska_cache
= skc
;
1069 ska
->ska_flags
= flags
;
1070 taskq_init_ent(&ska
->ska_tqe
);
1071 taskq_dispatch_ent(spl_kmem_cache_taskq
,
1072 spl_cache_grow_work
, ska
, 0, &ska
->ska_tqe
);
1076 * The goal here is to only detect the rare case where a virtual slab
1077 * allocation has deadlocked. We must be careful to minimize the use
1078 * of emergency objects which are more expensive to track. Therefore,
1079 * we set a very long timeout for the asynchronous allocation and if
1080 * the timeout is reached the cache is flagged as deadlocked. From
1081 * this point only new emergency objects will be allocated until the
1082 * asynchronous allocation completes and clears the deadlocked flag.
1084 if (test_bit(KMC_BIT_DEADLOCKED
, &skc
->skc_flags
)) {
1085 rc
= spl_emergency_alloc(skc
, flags
, obj
);
1087 remaining
= wait_event_timeout(skc
->skc_waitq
,
1088 spl_cache_grow_wait(skc
), HZ
/ 10);
1091 spin_lock(&skc
->skc_lock
);
1092 if (test_bit(KMC_BIT_GROWING
, &skc
->skc_flags
)) {
1093 set_bit(KMC_BIT_DEADLOCKED
, &skc
->skc_flags
);
1094 skc
->skc_obj_deadlock
++;
1096 spin_unlock(&skc
->skc_lock
);
1106 * Refill a per-cpu magazine with objects from the slabs for this cache.
1107 * Ideally the magazine can be repopulated using existing objects which have
1108 * been released, however if we are unable to locate enough free objects new
1109 * slabs of objects will be created. On success NULL is returned, otherwise
1110 * the address of a single emergency object is returned for use by the caller.
1113 spl_cache_refill(spl_kmem_cache_t
*skc
, spl_kmem_magazine_t
*skm
, int flags
)
1115 spl_kmem_slab_t
*sks
;
1116 int count
= 0, rc
, refill
;
1119 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1120 ASSERT(skm
->skm_magic
== SKM_MAGIC
);
1122 refill
= MIN(skm
->skm_refill
, skm
->skm_size
- skm
->skm_avail
);
1123 spin_lock(&skc
->skc_lock
);
1125 while (refill
> 0) {
1126 /* No slabs available we may need to grow the cache */
1127 if (list_empty(&skc
->skc_partial_list
)) {
1128 spin_unlock(&skc
->skc_lock
);
1131 rc
= spl_cache_grow(skc
, flags
, &obj
);
1132 local_irq_disable();
1134 /* Emergency object for immediate use by caller */
1135 if (rc
== 0 && obj
!= NULL
)
1141 /* Rescheduled to different CPU skm is not local */
1142 if (skm
!= skc
->skc_mag
[smp_processor_id()])
1146 * Potentially rescheduled to the same CPU but
1147 * allocations may have occurred from this CPU while
1148 * we were sleeping so recalculate max refill.
1150 refill
= MIN(refill
, skm
->skm_size
- skm
->skm_avail
);
1152 spin_lock(&skc
->skc_lock
);
1156 /* Grab the next available slab */
1157 sks
= list_entry((&skc
->skc_partial_list
)->next
,
1158 spl_kmem_slab_t
, sks_list
);
1159 ASSERT(sks
->sks_magic
== SKS_MAGIC
);
1160 ASSERT(sks
->sks_ref
< sks
->sks_objs
);
1161 ASSERT(!list_empty(&sks
->sks_free_list
));
1164 * Consume as many objects as needed to refill the requested
1165 * cache. We must also be careful not to overfill it.
1167 while (sks
->sks_ref
< sks
->sks_objs
&& refill
-- > 0 &&
1169 ASSERT(skm
->skm_avail
< skm
->skm_size
);
1170 ASSERT(count
< skm
->skm_size
);
1171 skm
->skm_objs
[skm
->skm_avail
++] =
1172 spl_cache_obj(skc
, sks
);
1175 /* Move slab to skc_complete_list when full */
1176 if (sks
->sks_ref
== sks
->sks_objs
) {
1177 list_del(&sks
->sks_list
);
1178 list_add(&sks
->sks_list
, &skc
->skc_complete_list
);
1182 spin_unlock(&skc
->skc_lock
);
1188 * Release an object back to the slab from which it came.
1191 spl_cache_shrink(spl_kmem_cache_t
*skc
, void *obj
)
1193 spl_kmem_slab_t
*sks
= NULL
;
1194 spl_kmem_obj_t
*sko
= NULL
;
1196 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1198 sko
= spl_sko_from_obj(skc
, obj
);
1199 ASSERT(sko
->sko_magic
== SKO_MAGIC
);
1200 sks
= sko
->sko_slab
;
1201 ASSERT(sks
->sks_magic
== SKS_MAGIC
);
1202 ASSERT(sks
->sks_cache
== skc
);
1203 list_add(&sko
->sko_list
, &sks
->sks_free_list
);
1205 sks
->sks_age
= jiffies
;
1207 skc
->skc_obj_alloc
--;
1210 * Move slab to skc_partial_list when no longer full. Slabs
1211 * are added to the head to keep the partial list is quasi-full
1212 * sorted order. Fuller at the head, emptier at the tail.
1214 if (sks
->sks_ref
== (sks
->sks_objs
- 1)) {
1215 list_del(&sks
->sks_list
);
1216 list_add(&sks
->sks_list
, &skc
->skc_partial_list
);
1220 * Move empty slabs to the end of the partial list so
1221 * they can be easily found and freed during reclamation.
1223 if (sks
->sks_ref
== 0) {
1224 list_del(&sks
->sks_list
);
1225 list_add_tail(&sks
->sks_list
, &skc
->skc_partial_list
);
1226 skc
->skc_slab_alloc
--;
1231 * Allocate an object from the per-cpu magazine, or if the magazine
1232 * is empty directly allocate from a slab and repopulate the magazine.
1235 spl_kmem_cache_alloc(spl_kmem_cache_t
*skc
, int flags
)
1237 spl_kmem_magazine_t
*skm
;
1240 ASSERT0(flags
& ~KM_PUBLIC_MASK
);
1241 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1242 ASSERT(!test_bit(KMC_BIT_DESTROY
, &skc
->skc_flags
));
1245 * Allocate directly from a Linux slab. All optimizations are left
1246 * to the underlying cache we only need to guarantee that KM_SLEEP
1247 * callers will never fail.
1249 if (skc
->skc_flags
& KMC_SLAB
) {
1250 struct kmem_cache
*slc
= skc
->skc_linux_cache
;
1252 obj
= kmem_cache_alloc(slc
, kmem_flags_convert(flags
));
1253 } while ((obj
== NULL
) && !(flags
& KM_NOSLEEP
));
1257 * Even though we leave everything up to the
1258 * underlying cache we still keep track of
1259 * how many objects we've allocated in it for
1260 * better debuggability.
1262 percpu_counter_inc(&skc
->skc_linux_alloc
);
1267 local_irq_disable();
1271 * Safe to update per-cpu structure without lock, but
1272 * in the restart case we must be careful to reacquire
1273 * the local magazine since this may have changed
1274 * when we need to grow the cache.
1276 skm
= skc
->skc_mag
[smp_processor_id()];
1277 ASSERT(skm
->skm_magic
== SKM_MAGIC
);
1279 if (likely(skm
->skm_avail
)) {
1280 /* Object available in CPU cache, use it */
1281 obj
= skm
->skm_objs
[--skm
->skm_avail
];
1283 obj
= spl_cache_refill(skc
, skm
, flags
);
1284 if ((obj
== NULL
) && !(flags
& KM_NOSLEEP
))
1293 ASSERT(IS_P2ALIGNED(obj
, skc
->skc_obj_align
));
1296 /* Pre-emptively migrate object to CPU L1 cache */
1298 if (obj
&& skc
->skc_ctor
)
1299 skc
->skc_ctor(obj
, skc
->skc_private
, flags
);
1306 EXPORT_SYMBOL(spl_kmem_cache_alloc
);
1309 * Free an object back to the local per-cpu magazine, there is no
1310 * guarantee that this is the same magazine the object was originally
1311 * allocated from. We may need to flush entire from the magazine
1312 * back to the slabs to make space.
1315 spl_kmem_cache_free(spl_kmem_cache_t
*skc
, void *obj
)
1317 spl_kmem_magazine_t
*skm
;
1318 unsigned long flags
;
1320 int do_emergency
= 0;
1322 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1323 ASSERT(!test_bit(KMC_BIT_DESTROY
, &skc
->skc_flags
));
1326 * Run the destructor
1329 skc
->skc_dtor(obj
, skc
->skc_private
);
1332 * Free the object from the Linux underlying Linux slab.
1334 if (skc
->skc_flags
& KMC_SLAB
) {
1335 kmem_cache_free(skc
->skc_linux_cache
, obj
);
1336 percpu_counter_dec(&skc
->skc_linux_alloc
);
1341 * While a cache has outstanding emergency objects all freed objects
1342 * must be checked. However, since emergency objects will never use
1343 * a virtual address these objects can be safely excluded as an
1346 if (!is_vmalloc_addr(obj
)) {
1347 spin_lock(&skc
->skc_lock
);
1348 do_emergency
= (skc
->skc_obj_emergency
> 0);
1349 spin_unlock(&skc
->skc_lock
);
1351 if (do_emergency
&& (spl_emergency_free(skc
, obj
) == 0))
1355 local_irq_save(flags
);
1358 * Safe to update per-cpu structure without lock, but
1359 * no remote memory allocation tracking is being performed
1360 * it is entirely possible to allocate an object from one
1361 * CPU cache and return it to another.
1363 skm
= skc
->skc_mag
[smp_processor_id()];
1364 ASSERT(skm
->skm_magic
== SKM_MAGIC
);
1367 * Per-CPU cache full, flush it to make space for this object,
1368 * this may result in an empty slab which can be reclaimed once
1369 * interrupts are re-enabled.
1371 if (unlikely(skm
->skm_avail
>= skm
->skm_size
)) {
1372 spl_cache_flush(skc
, skm
, skm
->skm_refill
);
1376 /* Available space in cache, use it */
1377 skm
->skm_objs
[skm
->skm_avail
++] = obj
;
1379 local_irq_restore(flags
);
1382 spl_slab_reclaim(skc
);
1384 EXPORT_SYMBOL(spl_kmem_cache_free
);
1387 * Depending on how many and which objects are released it may simply
1388 * repopulate the local magazine which will then need to age-out. Objects
1389 * which cannot fit in the magazine will be released back to their slabs
1390 * which will also need to age out before being released. This is all just
1391 * best effort and we do not want to thrash creating and destroying slabs.
1394 spl_kmem_cache_reap_now(spl_kmem_cache_t
*skc
)
1396 ASSERT(skc
->skc_magic
== SKC_MAGIC
);
1397 ASSERT(!test_bit(KMC_BIT_DESTROY
, &skc
->skc_flags
));
1399 if (skc
->skc_flags
& KMC_SLAB
)
1402 atomic_inc(&skc
->skc_ref
);
1405 * Prevent concurrent cache reaping when contended.
1407 if (test_and_set_bit(KMC_BIT_REAPING
, &skc
->skc_flags
))
1410 /* Reclaim from the magazine and free all now empty slabs. */
1411 unsigned long irq_flags
;
1412 local_irq_save(irq_flags
);
1413 spl_kmem_magazine_t
*skm
= skc
->skc_mag
[smp_processor_id()];
1414 spl_cache_flush(skc
, skm
, skm
->skm_avail
);
1415 local_irq_restore(irq_flags
);
1417 spl_slab_reclaim(skc
);
1418 clear_bit_unlock(KMC_BIT_REAPING
, &skc
->skc_flags
);
1419 smp_mb__after_atomic();
1420 wake_up_bit(&skc
->skc_flags
, KMC_BIT_REAPING
);
1422 atomic_dec(&skc
->skc_ref
);
1424 EXPORT_SYMBOL(spl_kmem_cache_reap_now
);
1427 * This is stubbed out for code consistency with other platforms. There
1428 * is existing logic to prevent concurrent reaping so while this is ugly
1429 * it should do no harm.
1432 spl_kmem_cache_reap_active(void)
1436 EXPORT_SYMBOL(spl_kmem_cache_reap_active
);
1439 * Reap all free slabs from all registered caches.
1444 spl_kmem_cache_t
*skc
= NULL
;
1446 down_read(&spl_kmem_cache_sem
);
1447 list_for_each_entry(skc
, &spl_kmem_cache_list
, skc_list
) {
1448 spl_kmem_cache_reap_now(skc
);
1450 up_read(&spl_kmem_cache_sem
);
1452 EXPORT_SYMBOL(spl_kmem_reap
);
1455 spl_kmem_cache_init(void)
1457 init_rwsem(&spl_kmem_cache_sem
);
1458 INIT_LIST_HEAD(&spl_kmem_cache_list
);
1459 spl_kmem_cache_taskq
= taskq_create("spl_kmem_cache",
1460 spl_kmem_cache_kmem_threads
, maxclsyspri
,
1461 spl_kmem_cache_kmem_threads
* 8, INT_MAX
,
1462 TASKQ_PREPOPULATE
| TASKQ_DYNAMIC
);
1464 if (spl_kmem_cache_taskq
== NULL
)
1471 spl_kmem_cache_fini(void)
1473 taskq_destroy(spl_kmem_cache_taskq
);