ZIL: Call brt_pending_add() replaying TX_CLONE_RANGE
[zfs.git] / module / os / linux / zfs / zvol_os.c
blobf94ce69fb9e28e8d81a060477e9ce2acfe211f28
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 #include <sys/dataset_kstats.h>
26 #include <sys/dbuf.h>
27 #include <sys/dmu_traverse.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/zap.h>
32 #include <sys/zfeature.h>
33 #include <sys/zil_impl.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zio.h>
36 #include <sys/zfs_rlock.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zvol.h>
39 #include <sys/zvol_impl.h>
41 #include <linux/blkdev_compat.h>
42 #include <linux/task_io_accounting_ops.h>
44 #ifdef HAVE_BLK_MQ
45 #include <linux/blk-mq.h>
46 #endif
48 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
49 struct request *rq, boolean_t force_sync);
51 static unsigned int zvol_major = ZVOL_MAJOR;
52 static unsigned int zvol_request_sync = 0;
53 static unsigned int zvol_prefetch_bytes = (128 * 1024);
54 static unsigned long zvol_max_discard_blocks = 16384;
56 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
57 static unsigned int zvol_open_timeout_ms = 1000;
58 #endif
60 static unsigned int zvol_threads = 0;
61 #ifdef HAVE_BLK_MQ
62 static unsigned int zvol_blk_mq_threads = 0;
63 static unsigned int zvol_blk_mq_actual_threads;
64 static boolean_t zvol_use_blk_mq = B_FALSE;
67 * The maximum number of volblocksize blocks to process per thread. Typically,
68 * write heavy workloads preform better with higher values here, and read
69 * heavy workloads preform better with lower values, but that's not a hard
70 * and fast rule. It's basically a knob to tune between "less overhead with
71 * less parallelism" and "more overhead, but more parallelism".
73 * '8' was chosen as a reasonable, balanced, default based off of sequential
74 * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
76 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
77 #endif
79 #ifndef BLKDEV_DEFAULT_RQ
80 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
81 #define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
82 #endif
85 * Finalize our BIO or request.
87 #ifdef HAVE_BLK_MQ
88 #define END_IO(zv, bio, rq, error) do { \
89 if (bio) { \
90 BIO_END_IO(bio, error); \
91 } else { \
92 blk_mq_end_request(rq, errno_to_bi_status(error)); \
93 } \
94 } while (0)
95 #else
96 #define END_IO(zv, bio, rq, error) BIO_END_IO(bio, error)
97 #endif
99 #ifdef HAVE_BLK_MQ
100 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
101 static unsigned int zvol_actual_blk_mq_queue_depth;
102 #endif
104 struct zvol_state_os {
105 struct gendisk *zvo_disk; /* generic disk */
106 struct request_queue *zvo_queue; /* request queue */
107 dev_t zvo_dev; /* device id */
109 #ifdef HAVE_BLK_MQ
110 struct blk_mq_tag_set tag_set;
111 #endif
113 /* Set from the global 'zvol_use_blk_mq' at zvol load */
114 boolean_t use_blk_mq;
117 static taskq_t *zvol_taskq;
118 static struct ida zvol_ida;
120 typedef struct zv_request_stack {
121 zvol_state_t *zv;
122 struct bio *bio;
123 struct request *rq;
124 } zv_request_t;
126 typedef struct zv_work {
127 struct request *rq;
128 struct work_struct work;
129 } zv_work_t;
131 typedef struct zv_request_task {
132 zv_request_t zvr;
133 taskq_ent_t ent;
134 } zv_request_task_t;
136 static zv_request_task_t *
137 zv_request_task_create(zv_request_t zvr)
139 zv_request_task_t *task;
140 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
141 taskq_init_ent(&task->ent);
142 task->zvr = zvr;
143 return (task);
146 static void
147 zv_request_task_free(zv_request_task_t *task)
149 kmem_free(task, sizeof (*task));
152 #ifdef HAVE_BLK_MQ
155 * This is called when a new block multiqueue request comes in. A request
156 * contains one or more BIOs.
158 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
159 const struct blk_mq_queue_data *bd)
161 struct request *rq = bd->rq;
162 zvol_state_t *zv = rq->q->queuedata;
164 /* Tell the kernel that we are starting to process this request */
165 blk_mq_start_request(rq);
167 if (blk_rq_is_passthrough(rq)) {
168 /* Skip non filesystem request */
169 blk_mq_end_request(rq, BLK_STS_IOERR);
170 return (BLK_STS_IOERR);
173 zvol_request_impl(zv, NULL, rq, 0);
175 /* Acknowledge to the kernel that we got this request */
176 return (BLK_STS_OK);
179 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
180 .queue_rq = zvol_mq_queue_rq,
183 /* Initialize our blk-mq struct */
184 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
186 struct zvol_state_os *zso = zv->zv_zso;
188 memset(&zso->tag_set, 0, sizeof (zso->tag_set));
190 /* Initialize tag set. */
191 zso->tag_set.ops = &zvol_blk_mq_queue_ops;
192 zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
193 zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
194 zso->tag_set.numa_node = NUMA_NO_NODE;
195 zso->tag_set.cmd_size = 0;
198 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
199 * zvol_request_impl()
201 zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
202 zso->tag_set.driver_data = zv;
204 return (blk_mq_alloc_tag_set(&zso->tag_set));
206 #endif /* HAVE_BLK_MQ */
209 * Given a path, return TRUE if path is a ZVOL.
211 boolean_t
212 zvol_os_is_zvol(const char *path)
214 dev_t dev = 0;
216 if (vdev_lookup_bdev(path, &dev) != 0)
217 return (B_FALSE);
219 if (MAJOR(dev) == zvol_major)
220 return (B_TRUE);
222 return (B_FALSE);
225 static void
226 zvol_write(zv_request_t *zvr)
228 struct bio *bio = zvr->bio;
229 struct request *rq = zvr->rq;
230 int error = 0;
231 zfs_uio_t uio;
232 zvol_state_t *zv = zvr->zv;
233 struct request_queue *q;
234 struct gendisk *disk;
235 unsigned long start_time = 0;
236 boolean_t acct = B_FALSE;
238 ASSERT3P(zv, !=, NULL);
239 ASSERT3U(zv->zv_open_count, >, 0);
240 ASSERT3P(zv->zv_zilog, !=, NULL);
242 q = zv->zv_zso->zvo_queue;
243 disk = zv->zv_zso->zvo_disk;
245 /* bio marked as FLUSH need to flush before write */
246 if (io_is_flush(bio, rq))
247 zil_commit(zv->zv_zilog, ZVOL_OBJ);
249 /* Some requests are just for flush and nothing else. */
250 if (io_size(bio, rq) == 0) {
251 rw_exit(&zv->zv_suspend_lock);
252 END_IO(zv, bio, rq, 0);
253 return;
256 zfs_uio_bvec_init(&uio, bio, rq);
258 ssize_t start_resid = uio.uio_resid;
261 * With use_blk_mq, accounting is done by blk_mq_start_request()
262 * and blk_mq_end_request(), so we can skip it here.
264 if (bio) {
265 acct = blk_queue_io_stat(q);
266 if (acct) {
267 start_time = blk_generic_start_io_acct(q, disk, WRITE,
268 bio);
272 boolean_t sync =
273 io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
275 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
276 uio.uio_loffset, uio.uio_resid, RL_WRITER);
278 uint64_t volsize = zv->zv_volsize;
279 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
280 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
281 uint64_t off = uio.uio_loffset;
282 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
284 if (bytes > volsize - off) /* don't write past the end */
285 bytes = volsize - off;
287 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
289 /* This will only fail for ENOSPC */
290 error = dmu_tx_assign(tx, TXG_WAIT);
291 if (error) {
292 dmu_tx_abort(tx);
293 break;
295 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
296 if (error == 0) {
297 zvol_log_write(zv, tx, off, bytes, sync);
299 dmu_tx_commit(tx);
301 if (error)
302 break;
304 zfs_rangelock_exit(lr);
306 int64_t nwritten = start_resid - uio.uio_resid;
307 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
308 task_io_account_write(nwritten);
310 if (sync)
311 zil_commit(zv->zv_zilog, ZVOL_OBJ);
313 rw_exit(&zv->zv_suspend_lock);
315 if (bio && acct) {
316 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
319 END_IO(zv, bio, rq, -error);
322 static void
323 zvol_write_task(void *arg)
325 zv_request_task_t *task = arg;
326 zvol_write(&task->zvr);
327 zv_request_task_free(task);
330 static void
331 zvol_discard(zv_request_t *zvr)
333 struct bio *bio = zvr->bio;
334 struct request *rq = zvr->rq;
335 zvol_state_t *zv = zvr->zv;
336 uint64_t start = io_offset(bio, rq);
337 uint64_t size = io_size(bio, rq);
338 uint64_t end = start + size;
339 boolean_t sync;
340 int error = 0;
341 dmu_tx_t *tx;
342 struct request_queue *q = zv->zv_zso->zvo_queue;
343 struct gendisk *disk = zv->zv_zso->zvo_disk;
344 unsigned long start_time = 0;
345 boolean_t acct = B_FALSE;
347 ASSERT3P(zv, !=, NULL);
348 ASSERT3U(zv->zv_open_count, >, 0);
349 ASSERT3P(zv->zv_zilog, !=, NULL);
351 if (bio) {
352 acct = blk_queue_io_stat(q);
353 if (acct) {
354 start_time = blk_generic_start_io_acct(q, disk, WRITE,
355 bio);
359 sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
361 if (end > zv->zv_volsize) {
362 error = SET_ERROR(EIO);
363 goto unlock;
367 * Align the request to volume block boundaries when a secure erase is
368 * not required. This will prevent dnode_free_range() from zeroing out
369 * the unaligned parts which is slow (read-modify-write) and useless
370 * since we are not freeing any space by doing so.
372 if (!io_is_secure_erase(bio, rq)) {
373 start = P2ROUNDUP(start, zv->zv_volblocksize);
374 end = P2ALIGN(end, zv->zv_volblocksize);
375 size = end - start;
378 if (start >= end)
379 goto unlock;
381 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
382 start, size, RL_WRITER);
384 tx = dmu_tx_create(zv->zv_objset);
385 dmu_tx_mark_netfree(tx);
386 error = dmu_tx_assign(tx, TXG_WAIT);
387 if (error != 0) {
388 dmu_tx_abort(tx);
389 } else {
390 zvol_log_truncate(zv, tx, start, size, B_TRUE);
391 dmu_tx_commit(tx);
392 error = dmu_free_long_range(zv->zv_objset,
393 ZVOL_OBJ, start, size);
395 zfs_rangelock_exit(lr);
397 if (error == 0 && sync)
398 zil_commit(zv->zv_zilog, ZVOL_OBJ);
400 unlock:
401 rw_exit(&zv->zv_suspend_lock);
403 if (bio && acct) {
404 blk_generic_end_io_acct(q, disk, WRITE, bio,
405 start_time);
408 END_IO(zv, bio, rq, -error);
411 static void
412 zvol_discard_task(void *arg)
414 zv_request_task_t *task = arg;
415 zvol_discard(&task->zvr);
416 zv_request_task_free(task);
419 static void
420 zvol_read(zv_request_t *zvr)
422 struct bio *bio = zvr->bio;
423 struct request *rq = zvr->rq;
424 int error = 0;
425 zfs_uio_t uio;
426 boolean_t acct = B_FALSE;
427 zvol_state_t *zv = zvr->zv;
428 struct request_queue *q;
429 struct gendisk *disk;
430 unsigned long start_time = 0;
432 ASSERT3P(zv, !=, NULL);
433 ASSERT3U(zv->zv_open_count, >, 0);
435 zfs_uio_bvec_init(&uio, bio, rq);
437 q = zv->zv_zso->zvo_queue;
438 disk = zv->zv_zso->zvo_disk;
440 ssize_t start_resid = uio.uio_resid;
443 * When blk-mq is being used, accounting is done by
444 * blk_mq_start_request() and blk_mq_end_request().
446 if (bio) {
447 acct = blk_queue_io_stat(q);
448 if (acct)
449 start_time = blk_generic_start_io_acct(q, disk, READ,
450 bio);
453 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
454 uio.uio_loffset, uio.uio_resid, RL_READER);
456 uint64_t volsize = zv->zv_volsize;
458 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
459 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
461 /* don't read past the end */
462 if (bytes > volsize - uio.uio_loffset)
463 bytes = volsize - uio.uio_loffset;
465 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
466 if (error) {
467 /* convert checksum errors into IO errors */
468 if (error == ECKSUM)
469 error = SET_ERROR(EIO);
470 break;
473 zfs_rangelock_exit(lr);
475 int64_t nread = start_resid - uio.uio_resid;
476 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
477 task_io_account_read(nread);
479 rw_exit(&zv->zv_suspend_lock);
481 if (bio && acct) {
482 blk_generic_end_io_acct(q, disk, READ, bio, start_time);
485 END_IO(zv, bio, rq, -error);
488 static void
489 zvol_read_task(void *arg)
491 zv_request_task_t *task = arg;
492 zvol_read(&task->zvr);
493 zv_request_task_free(task);
498 * Process a BIO or request
500 * Either 'bio' or 'rq' should be set depending on if we are processing a
501 * bio or a request (both should not be set).
503 * force_sync: Set to 0 to defer processing to a background taskq
504 * Set to 1 to process data synchronously
506 static void
507 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
508 boolean_t force_sync)
510 fstrans_cookie_t cookie = spl_fstrans_mark();
511 uint64_t offset = io_offset(bio, rq);
512 uint64_t size = io_size(bio, rq);
513 int rw = io_data_dir(bio, rq);
515 if (zvol_request_sync)
516 force_sync = 1;
518 zv_request_t zvr = {
519 .zv = zv,
520 .bio = bio,
521 .rq = rq,
524 if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
525 printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
526 zv->zv_zso->zvo_disk->disk_name,
527 (long long unsigned)offset,
528 (long unsigned)size);
530 END_IO(zv, bio, rq, -SET_ERROR(EIO));
531 goto out;
534 zv_request_task_t *task;
536 if (rw == WRITE) {
537 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
538 END_IO(zv, bio, rq, -SET_ERROR(EROFS));
539 goto out;
543 * Prevents the zvol from being suspended, or the ZIL being
544 * concurrently opened. Will be released after the i/o
545 * completes.
547 rw_enter(&zv->zv_suspend_lock, RW_READER);
550 * Open a ZIL if this is the first time we have written to this
551 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
552 * than zv_state_lock so that we don't need to acquire an
553 * additional lock in this path.
555 if (zv->zv_zilog == NULL) {
556 rw_exit(&zv->zv_suspend_lock);
557 rw_enter(&zv->zv_suspend_lock, RW_WRITER);
558 if (zv->zv_zilog == NULL) {
559 zv->zv_zilog = zil_open(zv->zv_objset,
560 zvol_get_data, &zv->zv_kstat.dk_zil_sums);
561 zv->zv_flags |= ZVOL_WRITTEN_TO;
562 /* replay / destroy done in zvol_create_minor */
563 VERIFY0((zv->zv_zilog->zl_header->zh_flags &
564 ZIL_REPLAY_NEEDED));
566 rw_downgrade(&zv->zv_suspend_lock);
570 * We don't want this thread to be blocked waiting for i/o to
571 * complete, so we instead wait from a taskq callback. The
572 * i/o may be a ZIL write (via zil_commit()), or a read of an
573 * indirect block, or a read of a data block (if this is a
574 * partial-block write). We will indicate that the i/o is
575 * complete by calling END_IO() from the taskq callback.
577 * This design allows the calling thread to continue and
578 * initiate more concurrent operations by calling
579 * zvol_request() again. There are typically only a small
580 * number of threads available to call zvol_request() (e.g.
581 * one per iSCSI target), so keeping the latency of
582 * zvol_request() low is important for performance.
584 * The zvol_request_sync module parameter allows this
585 * behavior to be altered, for performance evaluation
586 * purposes. If the callback blocks, setting
587 * zvol_request_sync=1 will result in much worse performance.
589 * We can have up to zvol_threads concurrent i/o's being
590 * processed for all zvols on the system. This is typically
591 * a vast improvement over the zvol_request_sync=1 behavior
592 * of one i/o at a time per zvol. However, an even better
593 * design would be for zvol_request() to initiate the zio
594 * directly, and then be notified by the zio_done callback,
595 * which would call END_IO(). Unfortunately, the DMU/ZIL
596 * interfaces lack this functionality (they block waiting for
597 * the i/o to complete).
599 if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
600 if (force_sync) {
601 zvol_discard(&zvr);
602 } else {
603 task = zv_request_task_create(zvr);
604 taskq_dispatch_ent(zvol_taskq,
605 zvol_discard_task, task, 0, &task->ent);
607 } else {
608 if (force_sync) {
609 zvol_write(&zvr);
610 } else {
611 task = zv_request_task_create(zvr);
612 taskq_dispatch_ent(zvol_taskq,
613 zvol_write_task, task, 0, &task->ent);
616 } else {
618 * The SCST driver, and possibly others, may issue READ I/Os
619 * with a length of zero bytes. These empty I/Os contain no
620 * data and require no additional handling.
622 if (size == 0) {
623 END_IO(zv, bio, rq, 0);
624 goto out;
627 rw_enter(&zv->zv_suspend_lock, RW_READER);
629 /* See comment in WRITE case above. */
630 if (force_sync) {
631 zvol_read(&zvr);
632 } else {
633 task = zv_request_task_create(zvr);
634 taskq_dispatch_ent(zvol_taskq,
635 zvol_read_task, task, 0, &task->ent);
639 out:
640 spl_fstrans_unmark(cookie);
643 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
644 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
645 static void
646 zvol_submit_bio(struct bio *bio)
647 #else
648 static blk_qc_t
649 zvol_submit_bio(struct bio *bio)
650 #endif
651 #else
652 static MAKE_REQUEST_FN_RET
653 zvol_request(struct request_queue *q, struct bio *bio)
654 #endif
656 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
657 #if defined(HAVE_BIO_BDEV_DISK)
658 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
659 #else
660 struct request_queue *q = bio->bi_disk->queue;
661 #endif
662 #endif
663 zvol_state_t *zv = q->queuedata;
665 zvol_request_impl(zv, bio, NULL, 0);
666 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
667 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
668 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
669 return (BLK_QC_T_NONE);
670 #endif
673 static int
674 #ifdef HAVE_BLK_MODE_T
675 zvol_open(struct gendisk *disk, blk_mode_t flag)
676 #else
677 zvol_open(struct block_device *bdev, fmode_t flag)
678 #endif
680 zvol_state_t *zv;
681 int error = 0;
682 boolean_t drop_suspend = B_FALSE;
683 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
684 hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
685 hrtime_t start = gethrtime();
687 retry:
688 #endif
689 rw_enter(&zvol_state_lock, RW_READER);
691 * Obtain a copy of private_data under the zvol_state_lock to make
692 * sure that either the result of zvol free code path setting
693 * disk->private_data to NULL is observed, or zvol_os_free()
694 * is not called on this zv because of the positive zv_open_count.
696 #ifdef HAVE_BLK_MODE_T
697 zv = disk->private_data;
698 #else
699 zv = bdev->bd_disk->private_data;
700 #endif
701 if (zv == NULL) {
702 rw_exit(&zvol_state_lock);
703 return (SET_ERROR(-ENXIO));
706 mutex_enter(&zv->zv_state_lock);
708 * Make sure zvol is not suspended during first open
709 * (hold zv_suspend_lock) and respect proper lock acquisition
710 * ordering - zv_suspend_lock before zv_state_lock
712 if (zv->zv_open_count == 0) {
713 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
714 mutex_exit(&zv->zv_state_lock);
715 rw_enter(&zv->zv_suspend_lock, RW_READER);
716 mutex_enter(&zv->zv_state_lock);
717 /* check to see if zv_suspend_lock is needed */
718 if (zv->zv_open_count != 0) {
719 rw_exit(&zv->zv_suspend_lock);
720 } else {
721 drop_suspend = B_TRUE;
723 } else {
724 drop_suspend = B_TRUE;
727 rw_exit(&zvol_state_lock);
729 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
731 if (zv->zv_open_count == 0) {
732 boolean_t drop_namespace = B_FALSE;
734 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
737 * In all other call paths the spa_namespace_lock is taken
738 * before the bdev->bd_mutex lock. However, on open(2)
739 * the __blkdev_get() function calls fops->open() with the
740 * bdev->bd_mutex lock held. This can result in a deadlock
741 * when zvols from one pool are used as vdevs in another.
743 * To prevent a lock inversion deadlock we preemptively
744 * take the spa_namespace_lock. Normally the lock will not
745 * be contended and this is safe because spa_open_common()
746 * handles the case where the caller already holds the
747 * spa_namespace_lock.
749 * When the lock cannot be aquired after multiple retries
750 * this must be the vdev on zvol deadlock case and we have
751 * no choice but to return an error. For 5.12 and older
752 * kernels returning -ERESTARTSYS will result in the
753 * bdev->bd_mutex being dropped, then reacquired, and
754 * fops->open() being called again. This process can be
755 * repeated safely until both locks are acquired. For 5.13
756 * and newer the -ERESTARTSYS retry logic was removed from
757 * the kernel so the only option is to return the error for
758 * the caller to handle it.
760 if (!mutex_owned(&spa_namespace_lock)) {
761 if (!mutex_tryenter(&spa_namespace_lock)) {
762 mutex_exit(&zv->zv_state_lock);
763 rw_exit(&zv->zv_suspend_lock);
765 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
766 schedule();
767 return (SET_ERROR(-ERESTARTSYS));
768 #else
769 if ((gethrtime() - start) > timeout)
770 return (SET_ERROR(-ERESTARTSYS));
772 schedule_timeout(MSEC_TO_TICK(10));
773 goto retry;
774 #endif
775 } else {
776 drop_namespace = B_TRUE;
780 error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
782 if (drop_namespace)
783 mutex_exit(&spa_namespace_lock);
786 if (error == 0) {
787 if ((blk_mode_is_open_write(flag)) &&
788 (zv->zv_flags & ZVOL_RDONLY)) {
789 if (zv->zv_open_count == 0)
790 zvol_last_close(zv);
792 error = SET_ERROR(-EROFS);
793 } else {
794 zv->zv_open_count++;
798 mutex_exit(&zv->zv_state_lock);
799 if (drop_suspend)
800 rw_exit(&zv->zv_suspend_lock);
802 if (error == 0)
803 #ifdef HAVE_BLK_MODE_T
804 disk_check_media_change(disk);
805 #else
806 zfs_check_media_change(bdev);
807 #endif
809 return (error);
812 static void
813 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
814 zvol_release(struct gendisk *disk)
815 #else
816 zvol_release(struct gendisk *disk, fmode_t unused)
817 #endif
819 #if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
820 (void) unused;
821 #endif
822 zvol_state_t *zv;
823 boolean_t drop_suspend = B_TRUE;
825 rw_enter(&zvol_state_lock, RW_READER);
826 zv = disk->private_data;
828 mutex_enter(&zv->zv_state_lock);
829 ASSERT3U(zv->zv_open_count, >, 0);
831 * make sure zvol is not suspended during last close
832 * (hold zv_suspend_lock) and respect proper lock acquisition
833 * ordering - zv_suspend_lock before zv_state_lock
835 if (zv->zv_open_count == 1) {
836 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
837 mutex_exit(&zv->zv_state_lock);
838 rw_enter(&zv->zv_suspend_lock, RW_READER);
839 mutex_enter(&zv->zv_state_lock);
840 /* check to see if zv_suspend_lock is needed */
841 if (zv->zv_open_count != 1) {
842 rw_exit(&zv->zv_suspend_lock);
843 drop_suspend = B_FALSE;
846 } else {
847 drop_suspend = B_FALSE;
849 rw_exit(&zvol_state_lock);
851 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
853 zv->zv_open_count--;
854 if (zv->zv_open_count == 0) {
855 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
856 zvol_last_close(zv);
859 mutex_exit(&zv->zv_state_lock);
861 if (drop_suspend)
862 rw_exit(&zv->zv_suspend_lock);
865 static int
866 zvol_ioctl(struct block_device *bdev, fmode_t mode,
867 unsigned int cmd, unsigned long arg)
869 zvol_state_t *zv = bdev->bd_disk->private_data;
870 int error = 0;
872 ASSERT3U(zv->zv_open_count, >, 0);
874 switch (cmd) {
875 case BLKFLSBUF:
876 #ifdef HAVE_FSYNC_BDEV
877 fsync_bdev(bdev);
878 #elif defined(HAVE_SYNC_BLOCKDEV)
879 sync_blockdev(bdev);
880 #else
881 #error "Neither fsync_bdev() nor sync_blockdev() found"
882 #endif
883 invalidate_bdev(bdev);
884 rw_enter(&zv->zv_suspend_lock, RW_READER);
886 if (!(zv->zv_flags & ZVOL_RDONLY))
887 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
889 rw_exit(&zv->zv_suspend_lock);
890 break;
892 case BLKZNAME:
893 mutex_enter(&zv->zv_state_lock);
894 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
895 mutex_exit(&zv->zv_state_lock);
896 break;
898 default:
899 error = -ENOTTY;
900 break;
903 return (SET_ERROR(error));
906 #ifdef CONFIG_COMPAT
907 static int
908 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
909 unsigned cmd, unsigned long arg)
911 return (zvol_ioctl(bdev, mode, cmd, arg));
913 #else
914 #define zvol_compat_ioctl NULL
915 #endif
917 static unsigned int
918 zvol_check_events(struct gendisk *disk, unsigned int clearing)
920 unsigned int mask = 0;
922 rw_enter(&zvol_state_lock, RW_READER);
924 zvol_state_t *zv = disk->private_data;
925 if (zv != NULL) {
926 mutex_enter(&zv->zv_state_lock);
927 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
928 zv->zv_changed = 0;
929 mutex_exit(&zv->zv_state_lock);
932 rw_exit(&zvol_state_lock);
934 return (mask);
937 static int
938 zvol_revalidate_disk(struct gendisk *disk)
940 rw_enter(&zvol_state_lock, RW_READER);
942 zvol_state_t *zv = disk->private_data;
943 if (zv != NULL) {
944 mutex_enter(&zv->zv_state_lock);
945 set_capacity(zv->zv_zso->zvo_disk,
946 zv->zv_volsize >> SECTOR_BITS);
947 mutex_exit(&zv->zv_state_lock);
950 rw_exit(&zvol_state_lock);
952 return (0);
956 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
958 struct gendisk *disk = zv->zv_zso->zvo_disk;
960 #if defined(HAVE_REVALIDATE_DISK_SIZE)
961 revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
962 #elif defined(HAVE_REVALIDATE_DISK)
963 revalidate_disk(disk);
964 #else
965 zvol_revalidate_disk(disk);
966 #endif
967 return (0);
970 void
971 zvol_os_clear_private(zvol_state_t *zv)
974 * Cleared while holding zvol_state_lock as a writer
975 * which will prevent zvol_open() from opening it.
977 zv->zv_zso->zvo_disk->private_data = NULL;
981 * Provide a simple virtual geometry for legacy compatibility. For devices
982 * smaller than 1 MiB a small head and sector count is used to allow very
983 * tiny devices. For devices over 1 Mib a standard head and sector count
984 * is used to keep the cylinders count reasonable.
986 static int
987 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
989 zvol_state_t *zv = bdev->bd_disk->private_data;
990 sector_t sectors;
992 ASSERT3U(zv->zv_open_count, >, 0);
994 sectors = get_capacity(zv->zv_zso->zvo_disk);
996 if (sectors > 2048) {
997 geo->heads = 16;
998 geo->sectors = 63;
999 } else {
1000 geo->heads = 2;
1001 geo->sectors = 4;
1004 geo->start = 0;
1005 geo->cylinders = sectors / (geo->heads * geo->sectors);
1007 return (0);
1011 * Why have two separate block_device_operations structs?
1013 * Normally we'd just have one, and assign 'submit_bio' as needed. However,
1014 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
1015 * can't just change submit_bio dynamically at runtime. So just create two
1016 * separate structs to get around this.
1018 static const struct block_device_operations zvol_ops_blk_mq = {
1019 .open = zvol_open,
1020 .release = zvol_release,
1021 .ioctl = zvol_ioctl,
1022 .compat_ioctl = zvol_compat_ioctl,
1023 .check_events = zvol_check_events,
1024 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1025 .revalidate_disk = zvol_revalidate_disk,
1026 #endif
1027 .getgeo = zvol_getgeo,
1028 .owner = THIS_MODULE,
1031 static const struct block_device_operations zvol_ops = {
1032 .open = zvol_open,
1033 .release = zvol_release,
1034 .ioctl = zvol_ioctl,
1035 .compat_ioctl = zvol_compat_ioctl,
1036 .check_events = zvol_check_events,
1037 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1038 .revalidate_disk = zvol_revalidate_disk,
1039 #endif
1040 .getgeo = zvol_getgeo,
1041 .owner = THIS_MODULE,
1042 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1043 .submit_bio = zvol_submit_bio,
1044 #endif
1047 static int
1048 zvol_alloc_non_blk_mq(struct zvol_state_os *zso)
1050 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1051 #if defined(HAVE_BLK_ALLOC_DISK)
1052 zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
1053 if (zso->zvo_disk == NULL)
1054 return (1);
1056 zso->zvo_disk->minors = ZVOL_MINORS;
1057 zso->zvo_queue = zso->zvo_disk->queue;
1058 #else
1059 zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
1060 if (zso->zvo_queue == NULL)
1061 return (1);
1063 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1064 if (zso->zvo_disk == NULL) {
1065 blk_cleanup_queue(zso->zvo_queue);
1066 return (1);
1069 zso->zvo_disk->queue = zso->zvo_queue;
1070 #endif /* HAVE_BLK_ALLOC_DISK */
1071 #else
1072 zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
1073 if (zso->zvo_queue == NULL)
1074 return (1);
1076 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1077 if (zso->zvo_disk == NULL) {
1078 blk_cleanup_queue(zso->zvo_queue);
1079 return (1);
1082 zso->zvo_disk->queue = zso->zvo_queue;
1083 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1084 return (0);
1088 static int
1089 zvol_alloc_blk_mq(zvol_state_t *zv)
1091 #ifdef HAVE_BLK_MQ
1092 struct zvol_state_os *zso = zv->zv_zso;
1094 /* Allocate our blk-mq tag_set */
1095 if (zvol_blk_mq_alloc_tag_set(zv) != 0)
1096 return (1);
1098 #if defined(HAVE_BLK_ALLOC_DISK)
1099 zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
1100 if (zso->zvo_disk == NULL) {
1101 blk_mq_free_tag_set(&zso->tag_set);
1102 return (1);
1104 zso->zvo_queue = zso->zvo_disk->queue;
1105 zso->zvo_disk->minors = ZVOL_MINORS;
1106 #else
1107 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1108 if (zso->zvo_disk == NULL) {
1109 blk_cleanup_queue(zso->zvo_queue);
1110 blk_mq_free_tag_set(&zso->tag_set);
1111 return (1);
1113 /* Allocate queue */
1114 zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
1115 if (IS_ERR(zso->zvo_queue)) {
1116 blk_mq_free_tag_set(&zso->tag_set);
1117 return (1);
1120 /* Our queue is now created, assign it to our disk */
1121 zso->zvo_disk->queue = zso->zvo_queue;
1123 #endif
1124 #endif
1125 return (0);
1129 * Allocate memory for a new zvol_state_t and setup the required
1130 * request queue and generic disk structures for the block device.
1132 static zvol_state_t *
1133 zvol_alloc(dev_t dev, const char *name)
1135 zvol_state_t *zv;
1136 struct zvol_state_os *zso;
1137 uint64_t volmode;
1138 int ret;
1140 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1141 return (NULL);
1143 if (volmode == ZFS_VOLMODE_DEFAULT)
1144 volmode = zvol_volmode;
1146 if (volmode == ZFS_VOLMODE_NONE)
1147 return (NULL);
1149 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1150 zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
1151 zv->zv_zso = zso;
1152 zv->zv_volmode = volmode;
1154 list_link_init(&zv->zv_next);
1155 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1157 #ifdef HAVE_BLK_MQ
1158 zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
1159 #endif
1162 * The block layer has 3 interfaces for getting BIOs:
1164 * 1. blk-mq request queues (new)
1165 * 2. submit_bio() (oldest)
1166 * 3. regular request queues (old).
1168 * Each of those interfaces has two permutations:
1170 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1171 * both the disk and its queue (5.14 kernel or newer)
1173 * b) We don't have blk_*alloc_disk(), and have to allocate the
1174 * disk and the queue separately. (5.13 kernel or older)
1176 if (zv->zv_zso->use_blk_mq) {
1177 ret = zvol_alloc_blk_mq(zv);
1178 zso->zvo_disk->fops = &zvol_ops_blk_mq;
1179 } else {
1180 ret = zvol_alloc_non_blk_mq(zso);
1181 zso->zvo_disk->fops = &zvol_ops;
1183 if (ret != 0)
1184 goto out_kmem;
1186 blk_queue_set_write_cache(zso->zvo_queue, B_TRUE, B_TRUE);
1188 /* Limit read-ahead to a single page to prevent over-prefetching. */
1189 blk_queue_set_read_ahead(zso->zvo_queue, 1);
1191 if (!zv->zv_zso->use_blk_mq) {
1192 /* Disable write merging in favor of the ZIO pipeline. */
1193 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
1196 /* Enable /proc/diskstats */
1197 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, zso->zvo_queue);
1199 zso->zvo_queue->queuedata = zv;
1200 zso->zvo_dev = dev;
1201 zv->zv_open_count = 0;
1202 strlcpy(zv->zv_name, name, MAXNAMELEN);
1204 zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
1205 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1207 zso->zvo_disk->major = zvol_major;
1208 zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
1211 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1212 * This is accomplished by limiting the number of minors for the
1213 * device to one and explicitly disabling partition scanning.
1215 if (volmode == ZFS_VOLMODE_DEV) {
1216 zso->zvo_disk->minors = 1;
1217 zso->zvo_disk->flags &= ~ZFS_GENHD_FL_EXT_DEVT;
1218 zso->zvo_disk->flags |= ZFS_GENHD_FL_NO_PART;
1221 zso->zvo_disk->first_minor = (dev & MINORMASK);
1222 zso->zvo_disk->private_data = zv;
1223 snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
1224 ZVOL_DEV_NAME, (dev & MINORMASK));
1226 return (zv);
1228 out_kmem:
1229 kmem_free(zso, sizeof (struct zvol_state_os));
1230 kmem_free(zv, sizeof (zvol_state_t));
1231 return (NULL);
1235 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1236 * At this time, the structure is not opened by anyone, is taken off
1237 * the zvol_state_list, and has its private data set to NULL.
1238 * The zvol_state_lock is dropped.
1240 * This function may take many milliseconds to complete (e.g. we've seen
1241 * it take over 256ms), due to the calls to "blk_cleanup_queue" and
1242 * "del_gendisk". Thus, consumers need to be careful to account for this
1243 * latency when calling this function.
1245 void
1246 zvol_os_free(zvol_state_t *zv)
1249 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1250 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1251 ASSERT0(zv->zv_open_count);
1252 ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
1254 rw_destroy(&zv->zv_suspend_lock);
1255 zfs_rangelock_fini(&zv->zv_rangelock);
1257 del_gendisk(zv->zv_zso->zvo_disk);
1258 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
1259 defined(HAVE_BLK_ALLOC_DISK)
1260 #if defined(HAVE_BLK_CLEANUP_DISK)
1261 blk_cleanup_disk(zv->zv_zso->zvo_disk);
1262 #else
1263 put_disk(zv->zv_zso->zvo_disk);
1264 #endif
1265 #else
1266 blk_cleanup_queue(zv->zv_zso->zvo_queue);
1267 put_disk(zv->zv_zso->zvo_disk);
1268 #endif
1270 #ifdef HAVE_BLK_MQ
1271 if (zv->zv_zso->use_blk_mq)
1272 blk_mq_free_tag_set(&zv->zv_zso->tag_set);
1273 #endif
1275 ida_simple_remove(&zvol_ida,
1276 MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
1278 mutex_destroy(&zv->zv_state_lock);
1279 dataset_kstats_destroy(&zv->zv_kstat);
1281 kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
1282 kmem_free(zv, sizeof (zvol_state_t));
1285 void
1286 zvol_wait_close(zvol_state_t *zv)
1291 * Create a block device minor node and setup the linkage between it
1292 * and the specified volume. Once this function returns the block
1293 * device is live and ready for use.
1296 zvol_os_create_minor(const char *name)
1298 zvol_state_t *zv;
1299 objset_t *os;
1300 dmu_object_info_t *doi;
1301 uint64_t volsize;
1302 uint64_t len;
1303 unsigned minor = 0;
1304 int error = 0;
1305 int idx;
1306 uint64_t hash = zvol_name_hash(name);
1307 bool replayed_zil = B_FALSE;
1309 if (zvol_inhibit_dev)
1310 return (0);
1312 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1313 if (idx < 0)
1314 return (SET_ERROR(-idx));
1315 minor = idx << ZVOL_MINOR_BITS;
1317 zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1318 if (zv) {
1319 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1320 mutex_exit(&zv->zv_state_lock);
1321 ida_simple_remove(&zvol_ida, idx);
1322 return (SET_ERROR(EEXIST));
1325 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1327 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1328 if (error)
1329 goto out_doi;
1331 error = dmu_object_info(os, ZVOL_OBJ, doi);
1332 if (error)
1333 goto out_dmu_objset_disown;
1335 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1336 if (error)
1337 goto out_dmu_objset_disown;
1339 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1340 if (zv == NULL) {
1341 error = SET_ERROR(EAGAIN);
1342 goto out_dmu_objset_disown;
1344 zv->zv_hash = hash;
1346 if (dmu_objset_is_snapshot(os))
1347 zv->zv_flags |= ZVOL_RDONLY;
1349 zv->zv_volblocksize = doi->doi_data_block_size;
1350 zv->zv_volsize = volsize;
1351 zv->zv_objset = os;
1353 set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1355 blk_queue_max_hw_sectors(zv->zv_zso->zvo_queue,
1356 (DMU_MAX_ACCESS / 4) >> 9);
1358 if (zv->zv_zso->use_blk_mq) {
1360 * IO requests can be really big (1MB). When an IO request
1361 * comes in, it is passed off to zvol_read() or zvol_write()
1362 * in a new thread, where it is chunked up into 'volblocksize'
1363 * sized pieces and processed. So for example, if the request
1364 * is a 1MB write and your volblocksize is 128k, one zvol_write
1365 * thread will take that request and sequentially do ten 128k
1366 * IOs. This is due to the fact that the thread needs to lock
1367 * each volblocksize sized block. So you might be wondering:
1368 * "instead of passing the whole 1MB request to one thread,
1369 * why not pass ten individual 128k chunks to ten threads and
1370 * process the whole write in parallel?" The short answer is
1371 * that there's a sweet spot number of chunks that balances
1372 * the greater parallelism with the added overhead of more
1373 * threads. The sweet spot can be different depending on if you
1374 * have a read or write heavy workload. Writes typically want
1375 * high chunk counts while reads typically want lower ones. On
1376 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1377 * configuration, with volblocksize=8k, the sweet spot for good
1378 * sequential reads and writes was at 8 chunks.
1382 * Below we tell the kernel how big we want our requests
1383 * to be. You would think that blk_queue_io_opt() would be
1384 * used to do this since it is used to "set optimal request
1385 * size for the queue", but that doesn't seem to do
1386 * anything - the kernel still gives you huge requests
1387 * with tons of little PAGE_SIZE segments contained within it.
1389 * Knowing that the kernel will just give you PAGE_SIZE segments
1390 * no matter what, you can say "ok, I want PAGE_SIZE byte
1391 * segments, and I want 'N' of them per request", where N is
1392 * the correct number of segments for the volblocksize and
1393 * number of chunks you want.
1395 #ifdef HAVE_BLK_MQ
1396 if (zvol_blk_mq_blocks_per_thread != 0) {
1397 unsigned int chunks;
1398 chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
1400 blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1401 PAGE_SIZE);
1402 blk_queue_max_segments(zv->zv_zso->zvo_queue,
1403 (zv->zv_volblocksize * chunks) / PAGE_SIZE);
1404 } else {
1406 * Special case: zvol_blk_mq_blocks_per_thread = 0
1407 * Max everything out.
1409 blk_queue_max_segments(zv->zv_zso->zvo_queue,
1410 UINT16_MAX);
1411 blk_queue_max_segment_size(zv->zv_zso->zvo_queue,
1412 UINT_MAX);
1414 #endif
1415 } else {
1416 blk_queue_max_segments(zv->zv_zso->zvo_queue, UINT16_MAX);
1417 blk_queue_max_segment_size(zv->zv_zso->zvo_queue, UINT_MAX);
1420 blk_queue_physical_block_size(zv->zv_zso->zvo_queue,
1421 zv->zv_volblocksize);
1422 blk_queue_io_opt(zv->zv_zso->zvo_queue, zv->zv_volblocksize);
1423 blk_queue_max_discard_sectors(zv->zv_zso->zvo_queue,
1424 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1425 blk_queue_discard_granularity(zv->zv_zso->zvo_queue,
1426 zv->zv_volblocksize);
1427 #ifdef QUEUE_FLAG_DISCARD
1428 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1429 #endif
1430 #ifdef QUEUE_FLAG_NONROT
1431 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1432 #endif
1433 #ifdef QUEUE_FLAG_ADD_RANDOM
1434 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1435 #endif
1436 /* This flag was introduced in kernel version 4.12. */
1437 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1438 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1439 #endif
1441 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1442 error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1443 if (error)
1444 goto out_dmu_objset_disown;
1445 ASSERT3P(zv->zv_zilog, ==, NULL);
1446 zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
1447 if (spa_writeable(dmu_objset_spa(os))) {
1448 if (zil_replay_disable)
1449 replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
1450 else
1451 replayed_zil = zil_replay(os, zv, zvol_replay_vector);
1453 if (replayed_zil)
1454 zil_close(zv->zv_zilog);
1455 zv->zv_zilog = NULL;
1458 * When udev detects the addition of the device it will immediately
1459 * invoke blkid(8) to determine the type of content on the device.
1460 * Prefetching the blocks commonly scanned by blkid(8) will speed
1461 * up this process.
1463 len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
1464 if (len > 0) {
1465 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1466 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1467 ZIO_PRIORITY_SYNC_READ);
1470 zv->zv_objset = NULL;
1471 out_dmu_objset_disown:
1472 dmu_objset_disown(os, B_TRUE, FTAG);
1473 out_doi:
1474 kmem_free(doi, sizeof (dmu_object_info_t));
1477 * Keep in mind that once add_disk() is called, the zvol is
1478 * announced to the world, and zvol_open()/zvol_release() can
1479 * be called at any time. Incidentally, add_disk() itself calls
1480 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1481 * directly as well.
1483 if (error == 0) {
1484 rw_enter(&zvol_state_lock, RW_WRITER);
1485 zvol_insert(zv);
1486 rw_exit(&zvol_state_lock);
1487 #ifdef HAVE_ADD_DISK_RET
1488 error = add_disk(zv->zv_zso->zvo_disk);
1489 #else
1490 add_disk(zv->zv_zso->zvo_disk);
1491 #endif
1492 } else {
1493 ida_simple_remove(&zvol_ida, idx);
1496 return (error);
1499 void
1500 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1502 int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1504 ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1505 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1507 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1509 /* move to new hashtable entry */
1510 zv->zv_hash = zvol_name_hash(zv->zv_name);
1511 hlist_del(&zv->zv_hlink);
1512 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1515 * The block device's read-only state is briefly changed causing
1516 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1517 * the name change and fixes the symlinks. This does not change
1518 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1519 * changes. This would normally be done using kobject_uevent() but
1520 * that is a GPL-only symbol which is why we need this workaround.
1522 set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1523 set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1526 void
1527 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1530 set_disk_ro(zv->zv_zso->zvo_disk, flags);
1533 void
1534 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1537 set_capacity(zv->zv_zso->zvo_disk, capacity);
1541 zvol_init(void)
1543 int error;
1546 * zvol_threads is the module param the user passes in.
1548 * zvol_actual_threads is what we use internally, since the user can
1549 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
1551 static unsigned int zvol_actual_threads;
1553 if (zvol_threads == 0) {
1555 * See dde9380a1 for why 32 was chosen here. This should
1556 * probably be refined to be some multiple of the number
1557 * of CPUs.
1559 zvol_actual_threads = MAX(num_online_cpus(), 32);
1560 } else {
1561 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
1564 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1565 if (error) {
1566 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1567 return (error);
1570 #ifdef HAVE_BLK_MQ
1571 if (zvol_blk_mq_queue_depth == 0) {
1572 zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
1573 } else {
1574 zvol_actual_blk_mq_queue_depth =
1575 MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
1578 if (zvol_blk_mq_threads == 0) {
1579 zvol_blk_mq_actual_threads = num_online_cpus();
1580 } else {
1581 zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1582 1024);
1584 #endif
1585 zvol_taskq = taskq_create(ZVOL_DRIVER, zvol_actual_threads, maxclsyspri,
1586 zvol_actual_threads, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1587 if (zvol_taskq == NULL) {
1588 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1589 return (-ENOMEM);
1592 zvol_init_impl();
1593 ida_init(&zvol_ida);
1594 return (0);
1597 void
1598 zvol_fini(void)
1600 zvol_fini_impl();
1601 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1602 taskq_destroy(zvol_taskq);
1603 ida_destroy(&zvol_ida);
1606 /* BEGIN CSTYLED */
1607 module_param(zvol_inhibit_dev, uint, 0644);
1608 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1610 module_param(zvol_major, uint, 0444);
1611 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1613 module_param(zvol_threads, uint, 0444);
1614 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
1615 "to 0 to use all active CPUs");
1617 module_param(zvol_request_sync, uint, 0644);
1618 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
1620 module_param(zvol_max_discard_blocks, ulong, 0444);
1621 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1623 module_param(zvol_prefetch_bytes, uint, 0644);
1624 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
1626 module_param(zvol_volmode, uint, 0644);
1627 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
1629 #ifdef HAVE_BLK_MQ
1630 module_param(zvol_blk_mq_queue_depth, uint, 0644);
1631 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
1633 module_param(zvol_use_blk_mq, uint, 0644);
1634 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
1636 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
1637 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
1638 "Process volblocksize blocks per thread");
1639 #endif
1641 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
1642 module_param(zvol_open_timeout_ms, uint, 0644);
1643 MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
1644 #endif
1646 /* END CSTYLED */