4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright 2022 MNX Cloud, Inc.
33 * UTF-8 text preparation functions (PSARC/2007/149, PSARC/2007/458).
35 * Man pages: u8_textprep_open(9F), u8_textprep_buf(9F), u8_textprep_close(9F),
36 * u8_textprep_str(9F), u8_strcmp(9F), and u8_validate(9F). See also
37 * the section 3C man pages.
38 * Interface stability: Committed.
41 #include <sys/types.h>
42 #include <sys/string.h>
43 #include <sys/param.h>
44 #include <sys/sysmacros.h>
45 #include <sys/debug.h>
47 #include <sys/sunddi.h>
48 #include <sys/u8_textprep.h>
49 #include <sys/byteorder.h>
50 #include <sys/errno.h>
51 #include <sys/u8_textprep_data.h>
54 /* The maximum possible number of bytes in a UTF-8 character. */
55 #define U8_MB_CUR_MAX (4)
58 * The maximum number of bytes needed for a UTF-8 character to cover
59 * U+0000 - U+FFFF, i.e., the coding space of now deprecated UCS-2.
61 #define U8_MAX_BYTES_UCS2 (3)
63 /* The maximum possible number of bytes in a Stream-Safe Text. */
64 #define U8_STREAM_SAFE_TEXT_MAX (128)
67 * The maximum number of characters in a combining/conjoining sequence and
68 * the actual upperbound limit of a combining/conjoining sequence.
70 #define U8_MAX_CHARS_A_SEQ (32)
71 #define U8_UPPER_LIMIT_IN_A_SEQ (31)
73 /* The combining class value for Starter. */
74 #define U8_COMBINING_CLASS_STARTER (0)
77 * Some Hangul related macros at below.
79 * The first and the last of Hangul syllables, Hangul Jamo Leading consonants,
80 * Vowels, and optional Trailing consonants in Unicode scalar values.
82 * Please be noted that the U8_HANGUL_JAMO_T_FIRST is 0x11A7 at below not
83 * the actual U+11A8. This is due to that the trailing consonant is optional
84 * and thus we are doing a pre-calculation of subtracting one.
86 * Each of 19 modern leading consonants has total 588 possible syllables since
87 * Hangul has 21 modern vowels and 27 modern trailing consonants plus 1 for
88 * no trailing consonant case, i.e., 21 x 28 = 588.
90 * We also have bunch of Hangul related macros at below. Please bear in mind
91 * that the U8_HANGUL_JAMO_1ST_BYTE can be used to check whether it is
92 * a Hangul Jamo or not but the value does not guarantee that it is a Hangul
93 * Jamo; it just guarantee that it will be most likely.
95 #define U8_HANGUL_SYL_FIRST (0xAC00U)
96 #define U8_HANGUL_SYL_LAST (0xD7A3U)
98 #define U8_HANGUL_JAMO_L_FIRST (0x1100U)
99 #define U8_HANGUL_JAMO_L_LAST (0x1112U)
100 #define U8_HANGUL_JAMO_V_FIRST (0x1161U)
101 #define U8_HANGUL_JAMO_V_LAST (0x1175U)
102 #define U8_HANGUL_JAMO_T_FIRST (0x11A7U)
103 #define U8_HANGUL_JAMO_T_LAST (0x11C2U)
105 #define U8_HANGUL_V_COUNT (21)
106 #define U8_HANGUL_VT_COUNT (588)
107 #define U8_HANGUL_T_COUNT (28)
109 #define U8_HANGUL_JAMO_1ST_BYTE (0xE1U)
111 #define U8_SAVE_HANGUL_AS_UTF8(s, i, j, k, b) \
112 (s)[(i)] = (uchar_t)(0xE0U | ((uint32_t)(b) & 0xF000U) >> 12); \
113 (s)[(j)] = (uchar_t)(0x80U | ((uint32_t)(b) & 0x0FC0U) >> 6); \
114 (s)[(k)] = (uchar_t)(0x80U | ((uint32_t)(b) & 0x003FU));
116 #define U8_HANGUL_JAMO_L(u) \
117 ((u) >= U8_HANGUL_JAMO_L_FIRST && (u) <= U8_HANGUL_JAMO_L_LAST)
119 #define U8_HANGUL_JAMO_V(u) \
120 ((u) >= U8_HANGUL_JAMO_V_FIRST && (u) <= U8_HANGUL_JAMO_V_LAST)
122 #define U8_HANGUL_JAMO_T(u) \
123 ((u) > U8_HANGUL_JAMO_T_FIRST && (u) <= U8_HANGUL_JAMO_T_LAST)
125 #define U8_HANGUL_JAMO(u) \
126 ((u) >= U8_HANGUL_JAMO_L_FIRST && (u) <= U8_HANGUL_JAMO_T_LAST)
128 #define U8_HANGUL_SYLLABLE(u) \
129 ((u) >= U8_HANGUL_SYL_FIRST && (u) <= U8_HANGUL_SYL_LAST)
131 #define U8_HANGUL_COMPOSABLE_L_V(s, u) \
132 ((s) == U8_STATE_HANGUL_L && U8_HANGUL_JAMO_V((u)))
134 #define U8_HANGUL_COMPOSABLE_LV_T(s, u) \
135 ((s) == U8_STATE_HANGUL_LV && U8_HANGUL_JAMO_T((u)))
137 /* The types of decomposition mappings. */
138 #define U8_DECOMP_BOTH (0xF5U)
139 #define U8_DECOMP_CANONICAL (0xF6U)
141 /* The indicator for 16-bit table. */
142 #define U8_16BIT_TABLE_INDICATOR (0x8000U)
144 /* The following are some convenience macros. */
145 #define U8_PUT_3BYTES_INTO_UTF32(u, b1, b2, b3) \
146 (u) = ((((uint32_t)(b1) & 0x0F) << 12) | \
147 (((uint32_t)(b2) & 0x3F) << 6) | \
148 ((uint32_t)(b3) & 0x3F));
150 #define U8_SIMPLE_SWAP(a, b, t) \
155 #define U8_ASCII_TOUPPER(c) \
156 (((c) >= 'a' && (c) <= 'z') ? (c) - 'a' + 'A' : (c))
158 #define U8_ASCII_TOLOWER(c) \
159 (((c) >= 'A' && (c) <= 'Z') ? (c) - 'A' + 'a' : (c))
161 #define U8_ISASCII(c) (((uchar_t)(c)) < 0x80U)
163 * The following macro assumes that the two characters that are to be
164 * swapped are adjacent to each other and 'a' comes before 'b'.
166 * If the assumptions are not met, then, the macro will fail.
168 #define U8_SWAP_COMB_MARKS(a, b) \
169 for (k = 0; k < disp[(a)]; k++) \
170 u8t[k] = u8s[start[(a)] + k]; \
171 for (k = 0; k < disp[(b)]; k++) \
172 u8s[start[(a)] + k] = u8s[start[(b)] + k]; \
173 start[(b)] = start[(a)] + disp[(b)]; \
174 for (k = 0; k < disp[(a)]; k++) \
175 u8s[start[(b)] + k] = u8t[k]; \
176 U8_SIMPLE_SWAP(comb_class[(a)], comb_class[(b)], tc); \
177 U8_SIMPLE_SWAP(disp[(a)], disp[(b)], tc);
179 /* The possible states during normalization. */
182 U8_STATE_HANGUL_L
= 1,
183 U8_STATE_HANGUL_LV
= 2,
184 U8_STATE_HANGUL_LVT
= 3,
185 U8_STATE_HANGUL_V
= 4,
186 U8_STATE_HANGUL_T
= 5,
187 U8_STATE_COMBINING_MARK
= 6
188 } u8_normalization_states_t
;
191 * The three vectors at below are used to check bytes of a given UTF-8
192 * character are valid and not containing any malformed byte values.
194 * We used to have a quite relaxed UTF-8 binary representation but then there
195 * was some security related issues and so the Unicode Consortium defined
196 * and announced the UTF-8 Corrigendum at Unicode 3.1 and then refined it
197 * one more time at the Unicode 3.2. The following three tables are based on
201 #define U8_ILLEGAL_NEXT_BYTE_COMMON(c) ((c) < 0x80 || (c) > 0xBF)
203 #define I_ U8_ILLEGAL_CHAR
204 #define O_ U8_OUT_OF_RANGE_CHAR
206 static const int8_t u8_number_of_bytes
[0x100] = {
207 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
208 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
209 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
210 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
211 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
212 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
213 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
214 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
216 /* 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F */
217 I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
,
219 /* 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F */
220 I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
,
222 /* A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF */
223 I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
,
225 /* B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF */
226 I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
,
228 /* C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF */
229 I_
, I_
, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
231 /* D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF */
232 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
234 /* E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF */
235 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
237 /* F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF */
238 4, 4, 4, 4, 4, O_
, O_
, O_
, O_
, O_
, O_
, O_
, O_
, O_
, O_
, O_
,
244 static const uint8_t u8_valid_min_2nd_byte
[0x100] = {
245 0, 0, 0, 0, 0, 0, 0, 0,
246 0, 0, 0, 0, 0, 0, 0, 0,
247 0, 0, 0, 0, 0, 0, 0, 0,
248 0, 0, 0, 0, 0, 0, 0, 0,
249 0, 0, 0, 0, 0, 0, 0, 0,
250 0, 0, 0, 0, 0, 0, 0, 0,
251 0, 0, 0, 0, 0, 0, 0, 0,
252 0, 0, 0, 0, 0, 0, 0, 0,
253 0, 0, 0, 0, 0, 0, 0, 0,
254 0, 0, 0, 0, 0, 0, 0, 0,
255 0, 0, 0, 0, 0, 0, 0, 0,
256 0, 0, 0, 0, 0, 0, 0, 0,
257 0, 0, 0, 0, 0, 0, 0, 0,
258 0, 0, 0, 0, 0, 0, 0, 0,
259 0, 0, 0, 0, 0, 0, 0, 0,
260 0, 0, 0, 0, 0, 0, 0, 0,
261 0, 0, 0, 0, 0, 0, 0, 0,
262 0, 0, 0, 0, 0, 0, 0, 0,
263 0, 0, 0, 0, 0, 0, 0, 0,
264 0, 0, 0, 0, 0, 0, 0, 0,
265 0, 0, 0, 0, 0, 0, 0, 0,
266 0, 0, 0, 0, 0, 0, 0, 0,
267 0, 0, 0, 0, 0, 0, 0, 0,
268 0, 0, 0, 0, 0, 0, 0, 0,
269 /* C0 C1 C2 C3 C4 C5 C6 C7 */
270 0, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
271 /* C8 C9 CA CB CC CD CE CF */
272 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
273 /* D0 D1 D2 D3 D4 D5 D6 D7 */
274 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
275 /* D8 D9 DA DB DC DD DE DF */
276 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
277 /* E0 E1 E2 E3 E4 E5 E6 E7 */
278 0xa0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
279 /* E8 E9 EA EB EC ED EE EF */
280 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
281 /* F0 F1 F2 F3 F4 F5 F6 F7 */
282 0x90, 0x80, 0x80, 0x80, 0x80, 0, 0, 0,
283 0, 0, 0, 0, 0, 0, 0, 0,
286 static const uint8_t u8_valid_max_2nd_byte
[0x100] = {
287 0, 0, 0, 0, 0, 0, 0, 0,
288 0, 0, 0, 0, 0, 0, 0, 0,
289 0, 0, 0, 0, 0, 0, 0, 0,
290 0, 0, 0, 0, 0, 0, 0, 0,
291 0, 0, 0, 0, 0, 0, 0, 0,
292 0, 0, 0, 0, 0, 0, 0, 0,
293 0, 0, 0, 0, 0, 0, 0, 0,
294 0, 0, 0, 0, 0, 0, 0, 0,
295 0, 0, 0, 0, 0, 0, 0, 0,
296 0, 0, 0, 0, 0, 0, 0, 0,
297 0, 0, 0, 0, 0, 0, 0, 0,
298 0, 0, 0, 0, 0, 0, 0, 0,
299 0, 0, 0, 0, 0, 0, 0, 0,
300 0, 0, 0, 0, 0, 0, 0, 0,
301 0, 0, 0, 0, 0, 0, 0, 0,
302 0, 0, 0, 0, 0, 0, 0, 0,
303 0, 0, 0, 0, 0, 0, 0, 0,
304 0, 0, 0, 0, 0, 0, 0, 0,
305 0, 0, 0, 0, 0, 0, 0, 0,
306 0, 0, 0, 0, 0, 0, 0, 0,
307 0, 0, 0, 0, 0, 0, 0, 0,
308 0, 0, 0, 0, 0, 0, 0, 0,
309 0, 0, 0, 0, 0, 0, 0, 0,
310 0, 0, 0, 0, 0, 0, 0, 0,
311 /* C0 C1 C2 C3 C4 C5 C6 C7 */
312 0, 0, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
313 /* C8 C9 CA CB CC CD CE CF */
314 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
315 /* D0 D1 D2 D3 D4 D5 D6 D7 */
316 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
317 /* D8 D9 DA DB DC DD DE DF */
318 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
319 /* E0 E1 E2 E3 E4 E5 E6 E7 */
320 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
321 /* E8 E9 EA EB EC ED EE EF */
322 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0x9f, 0xbf, 0xbf,
323 /* F0 F1 F2 F3 F4 F5 F6 F7 */
324 0xbf, 0xbf, 0xbf, 0xbf, 0x8f, 0, 0, 0,
325 0, 0, 0, 0, 0, 0, 0, 0,
330 * The u8_validate() validates on the given UTF-8 character string and
331 * calculate the byte length. It is quite similar to mblen(3C) except that
332 * this will validate against the list of characters if required and
333 * specific to UTF-8 and Unicode.
336 u8_validate(const char *u8str
, size_t n
, char **list
, int flag
, int *errnum
)
348 boolean_t no_need_to_validate_entire
;
349 boolean_t check_additional
;
350 boolean_t validate_ucs2_range_only
;
355 ib
= (uchar_t
*)u8str
;
360 no_need_to_validate_entire
= ! (flag
& U8_VALIDATE_ENTIRE
);
361 check_additional
= flag
& U8_VALIDATE_CHECK_ADDITIONAL
;
362 validate_ucs2_range_only
= flag
& U8_VALIDATE_UCS2_RANGE
;
364 while (ib
< ibtail
) {
366 * The first byte of a UTF-8 character tells how many
367 * bytes will follow for the character. If the first byte
368 * is an illegal byte value or out of range value, we just
369 * return -1 with an appropriate error number.
371 sz
= u8_number_of_bytes
[*ib
];
372 if (sz
== U8_ILLEGAL_CHAR
) {
377 if (sz
== U8_OUT_OF_RANGE_CHAR
||
378 (validate_ucs2_range_only
&& sz
> U8_MAX_BYTES_UCS2
)) {
384 * If we don't have enough bytes to check on, that's also
385 * an error. As you can see, we give illegal byte sequence
386 * checking higher priority then EINVAL cases.
388 if ((ibtail
- ib
) < sz
) {
398 * Check on the multi-byte UTF-8 character. For more
399 * details on this, see comment added for the used
400 * data structures at the beginning of the file.
405 for (i
= 1; i
< sz
; i
++) {
407 if (*ib
< u8_valid_min_2nd_byte
[f
] ||
408 *ib
> u8_valid_max_2nd_byte
[f
]) {
413 } else if (U8_ILLEGAL_NEXT_BYTE_COMMON(*ib
)) {
422 if (check_additional
) {
423 for (p
= (uchar_t
**)list
, i
= 0; p
[i
]; i
++) {
427 if (*s1
!= *s2
|| *s2
== '\0')
433 if (s1
>= ib
&& *s2
== '\0') {
440 if (no_need_to_validate_entire
)
448 * The do_case_conv() looks at the mapping tables and returns found
449 * bytes if any. If not found, the input bytes are returned. The function
450 * always terminate the return bytes with a null character assuming that
451 * there are plenty of room to do so.
453 * The case conversions are simple case conversions mapping a character to
454 * another character as specified in the Unicode data. The byte size of
455 * the mapped character could be different from that of the input character.
457 * The return value is the byte length of the returned character excluding
458 * the terminating null byte.
461 do_case_conv(int uv
, uchar_t
*u8s
, uchar_t
*s
, int sz
, boolean_t is_it_toupper
)
474 * At this point, the only possible values for sz are 2, 3, and 4.
475 * The u8s should point to a vector that is well beyond the size of
481 } else if (sz
== 3) {
485 } else if (sz
== 4) {
491 /* This is not possible but just in case as a fallback. */
493 *u8s
= U8_ASCII_TOUPPER(*s
);
495 *u8s
= U8_ASCII_TOLOWER(*s
);
503 * Let's find out if we have a corresponding character.
505 b1
= u8_common_b1_tbl
[uv
][b1
];
506 if (b1
== U8_TBL_ELEMENT_NOT_DEF
)
509 b2
= u8_case_common_b2_tbl
[uv
][b1
][b2
];
510 if (b2
== U8_TBL_ELEMENT_NOT_DEF
)
514 b3_tbl
= u8_toupper_b3_tbl
[uv
][b2
][b3
].tbl_id
;
515 if (b3_tbl
== U8_TBL_ELEMENT_NOT_DEF
)
518 start_id
= u8_toupper_b4_tbl
[uv
][b3_tbl
][b4
];
519 end_id
= u8_toupper_b4_tbl
[uv
][b3_tbl
][b4
+ 1];
521 /* Either there is no match or an error at the table. */
522 if (start_id
>= end_id
|| (end_id
- start_id
) > U8_MB_CUR_MAX
)
525 b3_base
= u8_toupper_b3_tbl
[uv
][b2
][b3
].base
;
527 for (i
= 0; start_id
< end_id
; start_id
++)
528 u8s
[i
++] = u8_toupper_final_tbl
[uv
][b3_base
+ start_id
];
530 b3_tbl
= u8_tolower_b3_tbl
[uv
][b2
][b3
].tbl_id
;
531 if (b3_tbl
== U8_TBL_ELEMENT_NOT_DEF
)
534 start_id
= u8_tolower_b4_tbl
[uv
][b3_tbl
][b4
];
535 end_id
= u8_tolower_b4_tbl
[uv
][b3_tbl
][b4
+ 1];
537 if (start_id
>= end_id
|| (end_id
- start_id
) > U8_MB_CUR_MAX
)
540 b3_base
= u8_tolower_b3_tbl
[uv
][b2
][b3
].base
;
542 for (i
= 0; start_id
< end_id
; start_id
++)
543 u8s
[i
++] = u8_tolower_final_tbl
[uv
][b3_base
+ start_id
];
547 * If i is still zero, that means there is no corresponding character.
558 * The do_case_compare() function compares the two input strings, s1 and s2,
559 * one character at a time doing case conversions if applicable and return
560 * the comparison result as like strcmp().
562 * Since, in empirical sense, most of text data are 7-bit ASCII characters,
563 * we treat the 7-bit ASCII characters as a special case trying to yield
564 * faster processing time.
567 do_case_compare(size_t uv
, uchar_t
*s1
, uchar_t
*s2
, size_t n1
,
568 size_t n2
, boolean_t is_it_toupper
, int *errnum
)
576 uchar_t u8s1
[U8_MB_CUR_MAX
+ 1];
577 uchar_t u8s2
[U8_MB_CUR_MAX
+ 1];
580 while (i1
< n1
&& i2
< n2
) {
582 * Find out what would be the byte length for this UTF-8
583 * character at string s1 and also find out if this is
584 * an illegal start byte or not and if so, issue a proper
585 * error number and yet treat this byte as a character.
587 sz1
= u8_number_of_bytes
[*s1
];
594 * For 7-bit ASCII characters mainly, we do a quick case
595 * conversion right at here.
597 * If we don't have enough bytes for this character, issue
598 * an EINVAL error and use what are available.
600 * If we have enough bytes, find out if there is
601 * a corresponding uppercase character and if so, copy over
602 * the bytes for a comparison later. If there is no
603 * corresponding uppercase character, then, use what we have
604 * for the comparison.
608 u8s1
[0] = U8_ASCII_TOUPPER(*s1
);
610 u8s1
[0] = U8_ASCII_TOLOWER(*s1
);
613 } else if ((i1
+ sz1
) > n1
) {
615 for (j
= 0; (i1
+ j
) < n1
; )
619 (void) do_case_conv(uv
, u8s1
, s1
, sz1
, is_it_toupper
);
623 /* Do the same for the string s2. */
624 sz2
= u8_number_of_bytes
[*s2
];
632 u8s2
[0] = U8_ASCII_TOUPPER(*s2
);
634 u8s2
[0] = U8_ASCII_TOLOWER(*s2
);
637 } else if ((i2
+ sz2
) > n2
) {
639 for (j
= 0; (i2
+ j
) < n2
; )
643 (void) do_case_conv(uv
, u8s2
, s2
, sz2
, is_it_toupper
);
647 /* Now compare the two characters. */
648 if (sz1
== 1 && sz2
== 1) {
654 f
= strcmp((const char *)u8s1
, (const char *)u8s2
);
660 * They were the same. Let's move on to the next
668 * We compared until the end of either or both strings.
670 * If we reached to or went over the ends for the both, that means
673 * If we reached only one of the two ends, that means the other string
674 * has something which then the fact can be used to determine
686 * The combining_class() function checks on the given bytes and find out
687 * the corresponding Unicode combining class value. The return value 0 means
688 * it is a Starter. Any illegal UTF-8 character will also be treated as
692 combining_class(size_t uv
, uchar_t
*s
, size_t sz
)
699 if (sz
== 1 || sz
> 4)
705 } else if (sz
== 3) {
709 } else if (sz
== 4) {
716 b1
= u8_common_b1_tbl
[uv
][b1
];
717 if (b1
== U8_TBL_ELEMENT_NOT_DEF
)
720 b2
= u8_combining_class_b2_tbl
[uv
][b1
][b2
];
721 if (b2
== U8_TBL_ELEMENT_NOT_DEF
)
724 b3
= u8_combining_class_b3_tbl
[uv
][b2
][b3
];
725 if (b3
== U8_TBL_ELEMENT_NOT_DEF
)
728 return (u8_combining_class_b4_tbl
[uv
][b3
][b4
]);
732 * The do_decomp() function finds out a matching decomposition if any
733 * and return. If there is no match, the input bytes are copied and returned.
734 * The function also checks if there is a Hangul, decomposes it if necessary
737 * To save time, a single byte 7-bit ASCII character should be handled by
740 * The function returns the number of bytes returned sans always terminating
741 * the null byte. It will also return a state that will tell if there was
742 * a Hangul character decomposed which then will be used by the caller.
745 do_decomp(size_t uv
, uchar_t
*u8s
, uchar_t
*s
, int sz
,
746 boolean_t canonical_decomposition
, u8_normalization_states_t
*state
)
763 } else if (sz
== 3) {
764 /* Convert it to a Unicode scalar value. */
765 U8_PUT_3BYTES_INTO_UTF32(u1
, s
[0], s
[1], s
[2]);
768 * If this is a Hangul syllable, we decompose it into
769 * a leading consonant, a vowel, and an optional trailing
770 * consonant and then return.
772 if (U8_HANGUL_SYLLABLE(u1
)) {
773 u1
-= U8_HANGUL_SYL_FIRST
;
775 b1
= U8_HANGUL_JAMO_L_FIRST
+ u1
/ U8_HANGUL_VT_COUNT
;
776 b2
= U8_HANGUL_JAMO_V_FIRST
+ (u1
% U8_HANGUL_VT_COUNT
)
778 b3
= u1
% U8_HANGUL_T_COUNT
;
780 U8_SAVE_HANGUL_AS_UTF8(u8s
, 0, 1, 2, b1
);
781 U8_SAVE_HANGUL_AS_UTF8(u8s
, 3, 4, 5, b2
);
783 b3
+= U8_HANGUL_JAMO_T_FIRST
;
784 U8_SAVE_HANGUL_AS_UTF8(u8s
, 6, 7, 8, b3
);
787 *state
= U8_STATE_HANGUL_LVT
;
792 *state
= U8_STATE_HANGUL_LV
;
802 * If this is a Hangul Jamo, we know there is nothing
803 * further that we can decompose.
805 if (U8_HANGUL_JAMO_L(u1
)) {
806 *state
= U8_STATE_HANGUL_L
;
810 if (U8_HANGUL_JAMO_V(u1
)) {
811 if (*state
== U8_STATE_HANGUL_L
)
812 *state
= U8_STATE_HANGUL_LV
;
814 *state
= U8_STATE_HANGUL_V
;
818 if (U8_HANGUL_JAMO_T(u1
)) {
819 if (*state
== U8_STATE_HANGUL_LV
)
820 *state
= U8_STATE_HANGUL_LVT
;
822 *state
= U8_STATE_HANGUL_T
;
825 } else if (sz
== 4) {
833 * This is a fallback and should not happen if the function
834 * was called properly.
838 *state
= U8_STATE_START
;
843 * At this point, this routine does not know what it would get.
844 * The caller should sort it out if the state isn't a Hangul one.
846 *state
= U8_STATE_START
;
848 /* Try to find matching decomposition mapping byte sequence. */
849 b1
= u8_common_b1_tbl
[uv
][b1
];
850 if (b1
== U8_TBL_ELEMENT_NOT_DEF
)
853 b2
= u8_decomp_b2_tbl
[uv
][b1
][b2
];
854 if (b2
== U8_TBL_ELEMENT_NOT_DEF
)
857 b3_tbl
= u8_decomp_b3_tbl
[uv
][b2
][b3
].tbl_id
;
858 if (b3_tbl
== U8_TBL_ELEMENT_NOT_DEF
)
862 * If b3_tbl is bigger than or equal to U8_16BIT_TABLE_INDICATOR
863 * which is 0x8000, this means we couldn't fit the mappings into
864 * the cardinality of a unsigned byte.
866 if (b3_tbl
>= U8_16BIT_TABLE_INDICATOR
) {
867 b3_tbl
-= U8_16BIT_TABLE_INDICATOR
;
868 start_id
= u8_decomp_b4_16bit_tbl
[uv
][b3_tbl
][b4
];
869 end_id
= u8_decomp_b4_16bit_tbl
[uv
][b3_tbl
][b4
+ 1];
871 // cppcheck-suppress arrayIndexOutOfBoundsCond
872 start_id
= u8_decomp_b4_tbl
[uv
][b3_tbl
][b4
];
873 // cppcheck-suppress arrayIndexOutOfBoundsCond
874 end_id
= u8_decomp_b4_tbl
[uv
][b3_tbl
][b4
+ 1];
877 /* This also means there wasn't any matching decomposition. */
878 if (start_id
>= end_id
)
882 * The final table for decomposition mappings has three types of
883 * byte sequences depending on whether a mapping is for compatibility
884 * decomposition, canonical decomposition, or both like the following:
886 * (1) Compatibility decomposition mappings:
888 * +---+---+-...-+---+
889 * | B0| B1| ... | Bm|
890 * +---+---+-...-+---+
892 * The first byte, B0, is always less than 0xF5 (U8_DECOMP_BOTH).
894 * (2) Canonical decomposition mappings:
896 * +---+---+---+-...-+---+
897 * | T | b0| b1| ... | bn|
898 * +---+---+---+-...-+---+
900 * where the first byte, T, is 0xF6 (U8_DECOMP_CANONICAL).
904 * +---+---+---+---+-...-+---+---+---+-...-+---+
905 * | T | D | b0| b1| ... | bn| B0| B1| ... | Bm|
906 * +---+---+---+---+-...-+---+---+---+-...-+---+
908 * where T is 0xF5 (U8_DECOMP_BOTH) and D is a displacement
909 * byte, b0 to bn are canonical mapping bytes and B0 to Bm are
910 * compatibility mapping bytes.
912 * Note that compatibility decomposition means doing recursive
913 * decompositions using both compatibility decomposition mappings and
914 * canonical decomposition mappings. On the other hand, canonical
915 * decomposition means doing recursive decompositions using only
916 * canonical decomposition mappings. Since the table we have has gone
917 * through the recursions already, we do not need to do so during
918 * runtime, i.e., the table has been completely flattened out
922 b3_base
= u8_decomp_b3_tbl
[uv
][b2
][b3
].base
;
924 /* Get the type, T, of the byte sequence. */
925 b1
= u8_decomp_final_tbl
[uv
][b3_base
+ start_id
];
928 * If necessary, adjust start_id, end_id, or both. Note that if
929 * this is compatibility decomposition mapping, there is no
932 if (canonical_decomposition
) {
933 /* Is the mapping only for compatibility decomposition? */
934 if (b1
< U8_DECOMP_BOTH
)
939 if (b1
== U8_DECOMP_BOTH
) {
941 u8_decomp_final_tbl
[uv
][b3_base
+ start_id
];
946 * Unless this is a compatibility decomposition mapping,
947 * we adjust the start_id.
949 if (b1
== U8_DECOMP_BOTH
) {
951 start_id
+= u8_decomp_final_tbl
[uv
][b3_base
+ start_id
];
952 } else if (b1
== U8_DECOMP_CANONICAL
) {
957 for (i
= 0; start_id
< end_id
; start_id
++)
958 u8s
[i
++] = u8_decomp_final_tbl
[uv
][b3_base
+ start_id
];
965 * The find_composition_start() function uses the character bytes given and
966 * find out the matching composition mappings if any and return the address
967 * to the composition mappings as explained in the do_composition().
970 find_composition_start(size_t uv
, uchar_t
*s
, size_t sz
)
983 } else if (sz
== 2) {
986 } else if (sz
== 3) {
990 } else if (sz
== 4) {
997 * This is a fallback and should not happen if the function
998 * was called properly.
1003 b1
= u8_composition_b1_tbl
[uv
][b1
];
1004 if (b1
== U8_TBL_ELEMENT_NOT_DEF
)
1007 b2
= u8_composition_b2_tbl
[uv
][b1
][b2
];
1008 if (b2
== U8_TBL_ELEMENT_NOT_DEF
)
1011 b3_tbl
= u8_composition_b3_tbl
[uv
][b2
][b3
].tbl_id
;
1012 if (b3_tbl
== U8_TBL_ELEMENT_NOT_DEF
)
1015 if (b3_tbl
>= U8_16BIT_TABLE_INDICATOR
) {
1016 b3_tbl
-= U8_16BIT_TABLE_INDICATOR
;
1017 start_id
= u8_composition_b4_16bit_tbl
[uv
][b3_tbl
][b4
];
1018 end_id
= u8_composition_b4_16bit_tbl
[uv
][b3_tbl
][b4
+ 1];
1020 // cppcheck-suppress arrayIndexOutOfBoundsCond
1021 start_id
= u8_composition_b4_tbl
[uv
][b3_tbl
][b4
];
1022 // cppcheck-suppress arrayIndexOutOfBoundsCond
1023 end_id
= u8_composition_b4_tbl
[uv
][b3_tbl
][b4
+ 1];
1026 if (start_id
>= end_id
)
1029 b3_base
= u8_composition_b3_tbl
[uv
][b2
][b3
].base
;
1031 return ((uchar_t
*)&(u8_composition_final_tbl
[uv
][b3_base
+ start_id
]));
1035 * The blocked() function checks on the combining class values of previous
1036 * characters in this sequence and return whether it is blocked or not.
1039 blocked(uchar_t
*comb_class
, size_t last
)
1041 uchar_t my_comb_class
;
1044 my_comb_class
= comb_class
[last
];
1045 for (i
= 1; i
< last
; i
++)
1046 if (comb_class
[i
] >= my_comb_class
||
1047 comb_class
[i
] == U8_COMBINING_CLASS_STARTER
)
1054 * The do_composition() reads the character string pointed by 's' and
1055 * do necessary canonical composition and then copy over the result back to
1058 * The input argument 's' cannot contain more than 32 characters.
1061 do_composition(size_t uv
, uchar_t
*s
, uchar_t
*comb_class
, uchar_t
*start
,
1062 uchar_t
*disp
, size_t last
, uchar_t
**os
, uchar_t
*oslast
)
1064 uchar_t t
[U8_STREAM_SAFE_TEXT_MAX
+ 1];
1065 uchar_t tc
[U8_MB_CUR_MAX
] = { '\0' };
1066 uint8_t saved_marks
[U8_MAX_CHARS_A_SEQ
];
1067 size_t saved_marks_count
;
1081 boolean_t match_not_found
= B_TRUE
;
1084 * This should never happen unless the callers are doing some strange
1085 * and unexpected things.
1087 * The "last" is the index pointing to the last character not last + 1.
1089 if (last
>= U8_MAX_CHARS_A_SEQ
)
1090 last
= U8_UPPER_LIMIT_IN_A_SEQ
;
1092 for (i
= l
= 0; i
<= last
; i
++) {
1094 * The last or any non-Starters at the beginning, we don't
1095 * have any chance to do composition and so we just copy them
1096 * to the temporary buffer.
1098 if (i
>= last
|| comb_class
[i
] != U8_COMBINING_CLASS_STARTER
) {
1102 for (k
= 0; k
< size
; k
++)
1108 * If this could be a start of Hangul Jamos, then, we try to
1111 if (s
[start
[i
]] == U8_HANGUL_JAMO_1ST_BYTE
) {
1112 U8_PUT_3BYTES_INTO_UTF32(u1
, s
[start
[i
]],
1113 s
[start
[i
] + 1], s
[start
[i
] + 2]);
1114 U8_PUT_3BYTES_INTO_UTF32(u2
, s
[start
[i
] + 3],
1115 s
[start
[i
] + 4], s
[start
[i
] + 5]);
1117 if (U8_HANGUL_JAMO_L(u1
) && U8_HANGUL_JAMO_V(u2
)) {
1118 u1
-= U8_HANGUL_JAMO_L_FIRST
;
1119 u2
-= U8_HANGUL_JAMO_V_FIRST
;
1120 u1
= U8_HANGUL_SYL_FIRST
+
1121 (u1
* U8_HANGUL_V_COUNT
+ u2
) *
1126 U8_PUT_3BYTES_INTO_UTF32(u2
,
1127 s
[start
[i
]], s
[start
[i
] + 1],
1130 if (U8_HANGUL_JAMO_T(u2
)) {
1132 U8_HANGUL_JAMO_T_FIRST
;
1137 U8_SAVE_HANGUL_AS_UTF8(t
+ l
, 0, 1, 2, u1
);
1145 * Let's then find out if this Starter has composition
1148 p
= find_composition_start(uv
, s
+ start
[i
], disp
[i
]);
1153 * We have a Starter with composition mapping and the next
1154 * character is a non-Starter. Let's try to find out if
1155 * we can do composition.
1161 saved_marks_count
= 0;
1168 * The next for() loop compares the non-Starter pointed by
1169 * 'q' with the possible (joinable) characters pointed by 'p'.
1171 * The composition final table entry pointed by the 'p'
1172 * looks like the following:
1174 * +---+---+---+-...-+---+---+---+---+-...-+---+---+
1175 * | C | b0| b2| ... | bn| F | B0| B1| ... | Bm| F |
1176 * +---+---+---+-...-+---+---+---+---+-...-+---+---+
1178 * where C is the count byte indicating the number of
1179 * mapping pairs where each pair would be look like
1180 * (b0-bn F, B0-Bm F). The b0-bn are the bytes of the second
1181 * character of a canonical decomposition and the B0-Bm are
1182 * the bytes of a matching composite character. The F is
1183 * a filler byte after each character as the separator.
1186 match_not_found
= B_TRUE
;
1188 for (C
= *p
++; C
> 0; C
--) {
1189 for (k
= 0; k
< size
; p
++, k
++)
1193 /* Have we found it? */
1194 if (k
>= size
&& *p
== U8_TBL_ELEMENT_FILLER
) {
1195 match_not_found
= B_FALSE
;
1199 while (*++p
!= U8_TBL_ELEMENT_FILLER
)
1205 /* We didn't find; skip to the next pair. */
1206 if (*p
!= U8_TBL_ELEMENT_FILLER
)
1207 while (*++p
!= U8_TBL_ELEMENT_FILLER
)
1209 while (*++p
!= U8_TBL_ELEMENT_FILLER
)
1215 * If there was no match, we will need to save the combining
1216 * mark for later appending. After that, if the next one
1217 * is a non-Starter and not blocked, then, we try once
1218 * again to do composition with the next non-Starter.
1220 * If there was no match and this was a Starter, then,
1221 * this is a new start.
1223 * If there was a match and a composition done and we have
1224 * more to check on, then, we retrieve a new composition final
1225 * table entry for the composite and then try to do the
1226 * composition again.
1229 if (match_not_found
) {
1230 if (comb_class
[i
] == U8_COMBINING_CLASS_STARTER
) {
1235 saved_marks
[saved_marks_count
++] = i
;
1240 if (blocked(comb_class
, i
+ 1))
1241 saved_marks
[saved_marks_count
++] = ++i
;
1247 goto TRY_THE_NEXT_MARK
;
1249 } else if (i
< last
) {
1250 p
= find_composition_start(uv
, t
+ saved_l
,
1254 goto TRY_THE_NEXT_MARK
;
1259 * There is no more composition possible.
1261 * If there was no composition what so ever then we copy
1262 * over the original Starter and then append any non-Starters
1263 * remaining at the target string sequentially after that.
1267 p
= s
+ start
[saved_i
];
1268 size
= disp
[saved_i
];
1269 for (j
= 0; j
< size
; j
++)
1273 for (k
= 0; k
< saved_marks_count
; k
++) {
1274 p
= s
+ start
[saved_marks
[k
]];
1275 size
= disp
[saved_marks
[k
]];
1276 for (j
= 0; j
< size
; j
++)
1282 * If the last character is a Starter and if we have a character
1283 * (possibly another Starter) that can be turned into a composite,
1284 * we do so and we do so until there is no more of composition
1287 if (comb_class
[last
] == U8_COMBINING_CLASS_STARTER
) {
1289 saved_l
= l
- disp
[last
];
1291 while (p
< oslast
) {
1292 int8_t number_of_bytes
= u8_number_of_bytes
[*p
];
1294 if (number_of_bytes
<= 1)
1296 size
= number_of_bytes
;
1297 if ((p
+ size
) > oslast
)
1302 for (i
= 0; i
< size
; i
++)
1305 q
= find_composition_start(uv
, t
+ saved_l
,
1312 match_not_found
= B_TRUE
;
1314 for (C
= *q
++; C
> 0; C
--) {
1315 for (k
= 0; k
< size
; q
++, k
++)
1319 if (k
>= size
&& *q
== U8_TBL_ELEMENT_FILLER
) {
1320 match_not_found
= B_FALSE
;
1324 while (*++q
!= U8_TBL_ELEMENT_FILLER
) {
1326 * This is practically
1327 * impossible but we don't
1328 * want to take any chances.
1331 U8_STREAM_SAFE_TEXT_MAX
) {
1341 if (*q
!= U8_TBL_ELEMENT_FILLER
)
1342 while (*++q
!= U8_TBL_ELEMENT_FILLER
)
1344 while (*++q
!= U8_TBL_ELEMENT_FILLER
)
1349 if (match_not_found
) {
1359 * Now we copy over the temporary string to the target string.
1360 * Since composition always reduces the number of characters or
1361 * the number of characters stay, we don't need to worry about
1362 * the buffer overflow here.
1364 for (i
= 0; i
< l
; i
++)
1372 * The collect_a_seq() function checks on the given string s, collect
1373 * a sequence of characters at u8s, and return the sequence. While it collects
1374 * a sequence, it also applies case conversion, canonical or compatibility
1375 * decomposition, canonical decomposition, or some or all of them and
1378 * The collected sequence cannot be bigger than 32 characters since if
1379 * it is having more than 31 characters, the sequence will be terminated
1380 * with a U+034F COMBINING GRAPHEME JOINER (CGJ) character and turned into
1381 * a Stream-Safe Text. The collected sequence is always terminated with
1382 * a null byte and the return value is the byte length of the sequence
1383 * including 0. The return value does not include the terminating
1387 collect_a_seq(size_t uv
, uchar_t
*u8s
, uchar_t
**source
, uchar_t
*slast
,
1388 boolean_t is_it_toupper
,
1389 boolean_t is_it_tolower
,
1390 boolean_t canonical_decomposition
,
1391 boolean_t compatibility_decomposition
,
1392 boolean_t canonical_composition
,
1393 int *errnum
, u8_normalization_states_t
*state
)
1402 uchar_t comb_class
[U8_MAX_CHARS_A_SEQ
];
1403 uchar_t disp
[U8_MAX_CHARS_A_SEQ
];
1404 uchar_t start
[U8_MAX_CHARS_A_SEQ
];
1405 uchar_t u8t
[U8_MB_CUR_MAX
] = { '\0' };
1406 uchar_t uts
[U8_STREAM_SAFE_TEXT_MAX
+ 1];
1413 * Save the source string pointer which we will return a changed
1414 * pointer if we do processing.
1419 * The following is a fallback for just in case callers are not
1420 * checking the string boundaries before the calling.
1429 * As the first thing, let's collect a character and do case
1430 * conversion if necessary.
1433 sz
= u8_number_of_bytes
[*s
];
1448 u8s
[0] = U8_ASCII_TOUPPER(*s
);
1449 else if (is_it_tolower
)
1450 u8s
[0] = U8_ASCII_TOLOWER(*s
);
1455 } else if ((s
+ sz
) > slast
) {
1458 for (i
= 0; s
< slast
; )
1466 if (is_it_toupper
|| is_it_tolower
) {
1467 i
= do_case_conv(uv
, u8s
, s
, sz
, is_it_toupper
);
1471 for (i
= 0; i
< sz
; )
1478 * And then canonical/compatibility decomposition followed by
1479 * an optional canonical composition. Please be noted that
1480 * canonical composition is done only when a decomposition is
1483 if (canonical_decomposition
|| compatibility_decomposition
) {
1485 *state
= U8_STATE_START
;
1495 saved_sz
= do_decomp(uv
, u8s
, u8s
, sz
,
1496 canonical_decomposition
, state
);
1500 for (i
= 0; i
< saved_sz
; ) {
1501 sz
= u8_number_of_bytes
[u8s
[i
]];
1503 comb_class
[last
] = combining_class(uv
,
1513 * Decomposition yields various Hangul related
1514 * states but not on combining marks. We need to
1515 * find out at here by checking on the last
1518 if (*state
== U8_STATE_START
) {
1519 if (comb_class
[last
- 1])
1520 *state
= U8_STATE_COMBINING_MARK
;
1527 sz
= u8_number_of_bytes
[*s
];
1530 * If this is an illegal character, an incomplete
1531 * character, or an 7-bit ASCII Starter character,
1532 * then we have collected a sequence; break and let
1533 * the next call deal with the two cases.
1535 * Note that this is okay only if you are using this
1536 * function with a fixed length string, not on
1537 * a buffer with multiple calls of one chunk at a time.
1541 } else if ((s
+ sz
) > slast
) {
1545 * If the previous character was a Hangul Jamo
1546 * and this character is a Hangul Jamo that
1547 * can be conjoined, we collect the Jamo.
1549 if (*s
== U8_HANGUL_JAMO_1ST_BYTE
) {
1550 U8_PUT_3BYTES_INTO_UTF32(u1
,
1551 *s
, *(s
+ 1), *(s
+ 2));
1553 if (U8_HANGUL_COMPOSABLE_L_V(*state
,
1556 *state
= U8_STATE_HANGUL_LV
;
1557 goto COLLECT_A_HANGUL
;
1560 if (U8_HANGUL_COMPOSABLE_LV_T(*state
,
1563 *state
= U8_STATE_HANGUL_LVT
;
1564 goto COLLECT_A_HANGUL
;
1569 * Regardless of whatever it was, if this is
1570 * a Starter, we don't collect the character
1571 * since that's a new start and we will deal
1572 * with it at the next time.
1574 i
= combining_class(uv
, s
, sz
);
1575 if (i
== U8_COMBINING_CLASS_STARTER
)
1579 * We know the current character is a combining
1580 * mark. If the previous character wasn't
1581 * a Starter (not Hangul) or a combining mark,
1582 * then, we don't collect this combining mark.
1584 if (*state
!= U8_STATE_START
&&
1585 *state
!= U8_STATE_COMBINING_MARK
)
1588 *state
= U8_STATE_COMBINING_MARK
;
1591 * If we collected a Starter and combining
1592 * marks up to 30, i.e., total 31 characters,
1593 * then, we terminate this degenerately long
1594 * combining sequence with a U+034F COMBINING
1595 * GRAPHEME JOINER (CGJ) which is 0xCD 0x8F in
1596 * UTF-8 and turn this into a Stream-Safe
1597 * Text. This will be extremely rare but
1600 * The following will also guarantee that
1601 * we are not writing more than 32 characters
1602 * plus a NULL at u8s[].
1604 if (last
>= U8_UPPER_LIMIT_IN_A_SEQ
) {
1606 *state
= U8_STATE_START
;
1607 comb_class
[last
] = 0;
1608 start
[last
] = saved_sz
;
1612 u8s
[saved_sz
++] = 0xCD;
1613 u8s
[saved_sz
++] = 0x8F;
1619 * Some combining marks also do decompose into
1620 * another combining mark or marks.
1622 if (*state
== U8_STATE_COMBINING_MARK
) {
1625 i
= do_decomp(uv
, uts
, s
, sz
,
1626 canonical_decomposition
, state
);
1627 for (j
= 0; j
< i
; ) {
1628 sz
= u8_number_of_bytes
[uts
[j
]];
1633 start
[last
] = saved_sz
+ j
;
1638 U8_UPPER_LIMIT_IN_A_SEQ
) {
1640 goto TURN_STREAM_SAFE
;
1645 *state
= U8_STATE_COMBINING_MARK
;
1649 for (i
= 0; i
< sz
; i
++)
1650 u8s
[saved_sz
++] = uts
[i
];
1652 comb_class
[last
] = i
;
1653 start
[last
] = saved_sz
;
1657 for (i
= 0; i
< sz
; i
++)
1658 u8s
[saved_sz
++] = *s
++;
1662 * If this is U+0345 COMBINING GREEK
1663 * YPOGEGRAMMENI (0xCD 0x85 in UTF-8), a.k.a.,
1664 * iota subscript, and need to be converted to
1665 * uppercase letter, convert it to U+0399 GREEK
1666 * CAPITAL LETTER IOTA (0xCE 0x99 in UTF-8),
1667 * i.e., convert to capital adscript form as
1668 * specified in the Unicode standard.
1670 * This is the only special case of (ambiguous)
1671 * case conversion at combining marks and
1672 * probably the standard will never have
1673 * anything similar like this in future.
1675 if (is_it_toupper
&& sz
>= 2 &&
1676 u8s
[saved_sz
- 2] == 0xCD &&
1677 u8s
[saved_sz
- 1] == 0x85) {
1678 u8s
[saved_sz
- 2] = 0xCE;
1679 u8s
[saved_sz
- 1] = 0x99;
1685 * Let's try to ensure a canonical ordering for the collected
1686 * combining marks. We do this only if we have collected
1687 * at least one more non-Starter. (The decomposition mapping
1688 * data tables have fully (and recursively) expanded and
1689 * canonically ordered decompositions.)
1691 * The U8_SWAP_COMB_MARKS() convenience macro has some
1692 * assumptions and we are meeting the assumptions.
1695 if (last
>= saved_last
) {
1696 for (i
= 0; i
< last
; i
++)
1697 for (j
= last
; j
> i
; j
--)
1698 if (comb_class
[j
] &&
1699 comb_class
[j
- 1] > comb_class
[j
]) {
1700 U8_SWAP_COMB_MARKS(j
- 1, j
);
1706 if (! canonical_composition
) {
1707 u8s
[saved_sz
] = '\0';
1712 * Now do the canonical composition. Note that we do this
1713 * only after a canonical or compatibility decomposition to
1714 * finish up NFC or NFKC.
1716 sz
= do_composition(uv
, u8s
, comb_class
, start
, disp
, last
,
1722 return ((size_t)sz
);
1726 * The do_norm_compare() function does string comparison based on Unicode
1727 * simple case mappings and Unicode Normalization definitions.
1729 * It does so by collecting a sequence of character at a time and comparing
1730 * the collected sequences from the strings.
1732 * The meanings on the return values are the same as the usual strcmp().
1735 do_norm_compare(size_t uv
, uchar_t
*s1
, uchar_t
*s2
, size_t n1
, size_t n2
,
1736 int flag
, int *errnum
)
1741 uchar_t u8s1
[U8_STREAM_SAFE_TEXT_MAX
+ 1];
1742 uchar_t u8s2
[U8_STREAM_SAFE_TEXT_MAX
+ 1];
1745 boolean_t is_it_toupper
;
1746 boolean_t is_it_tolower
;
1747 boolean_t canonical_decomposition
;
1748 boolean_t compatibility_decomposition
;
1749 boolean_t canonical_composition
;
1750 u8_normalization_states_t state
;
1755 is_it_toupper
= flag
& U8_TEXTPREP_TOUPPER
;
1756 is_it_tolower
= flag
& U8_TEXTPREP_TOLOWER
;
1757 canonical_decomposition
= flag
& U8_CANON_DECOMP
;
1758 compatibility_decomposition
= flag
& U8_COMPAT_DECOMP
;
1759 canonical_composition
= flag
& U8_CANON_COMP
;
1761 while (s1
< s1last
&& s2
< s2last
) {
1763 * If the current character is a 7-bit ASCII and the last
1764 * character, or, if the current character and the next
1765 * character are both some 7-bit ASCII characters then
1766 * we treat the current character as a sequence.
1768 * In any other cases, we need to call collect_a_seq().
1771 if (U8_ISASCII(*s1
) && ((s1
+ 1) >= s1last
||
1772 ((s1
+ 1) < s1last
&& U8_ISASCII(*(s1
+ 1))))) {
1774 u8s1
[0] = U8_ASCII_TOUPPER(*s1
);
1775 else if (is_it_tolower
)
1776 u8s1
[0] = U8_ASCII_TOLOWER(*s1
);
1783 state
= U8_STATE_START
;
1784 sz1
= collect_a_seq(uv
, u8s1
, &s1
, s1last
,
1785 is_it_toupper
, is_it_tolower
,
1786 canonical_decomposition
,
1787 compatibility_decomposition
,
1788 canonical_composition
, errnum
, &state
);
1791 if (U8_ISASCII(*s2
) && ((s2
+ 1) >= s2last
||
1792 ((s2
+ 1) < s2last
&& U8_ISASCII(*(s2
+ 1))))) {
1794 u8s2
[0] = U8_ASCII_TOUPPER(*s2
);
1795 else if (is_it_tolower
)
1796 u8s2
[0] = U8_ASCII_TOLOWER(*s2
);
1803 state
= U8_STATE_START
;
1804 sz2
= collect_a_seq(uv
, u8s2
, &s2
, s2last
,
1805 is_it_toupper
, is_it_tolower
,
1806 canonical_decomposition
,
1807 compatibility_decomposition
,
1808 canonical_composition
, errnum
, &state
);
1812 * Now compare the two characters. If they are the same,
1813 * we move on to the next character sequences.
1815 if (sz1
== 1 && sz2
== 1) {
1821 result
= strcmp((const char *)u8s1
, (const char *)u8s2
);
1828 * We compared until the end of either or both strings.
1830 * If we reached to or went over the ends for the both, that means
1831 * they are the same.
1833 * If we reached only one end, that means the other string has
1834 * something which then can be used to determine the return value.
1845 * The u8_strcmp() function compares two UTF-8 strings quite similar to
1846 * the strcmp(). For the comparison, however, Unicode Normalization specific
1847 * equivalency and Unicode simple case conversion mappings based equivalency
1848 * can be requested and checked against.
1851 u8_strcmp(const char *s1
, const char *s2
, size_t n
, int flag
, size_t uv
,
1861 * Check on the requested Unicode version, case conversion, and
1862 * normalization flag values.
1865 if (uv
> U8_UNICODE_LATEST
) {
1867 uv
= U8_UNICODE_LATEST
;
1871 flag
= U8_STRCMP_CS
;
1873 f
= flag
& (U8_STRCMP_CS
| U8_STRCMP_CI_UPPER
|
1874 U8_STRCMP_CI_LOWER
);
1876 flag
|= U8_STRCMP_CS
;
1877 } else if (f
!= U8_STRCMP_CS
&& f
!= U8_STRCMP_CI_UPPER
&&
1878 f
!= U8_STRCMP_CI_LOWER
) {
1880 flag
= U8_STRCMP_CS
;
1883 f
= flag
& (U8_CANON_DECOMP
| U8_COMPAT_DECOMP
| U8_CANON_COMP
);
1884 if (f
&& f
!= U8_STRCMP_NFD
&& f
!= U8_STRCMP_NFC
&&
1885 f
!= U8_STRCMP_NFKD
&& f
!= U8_STRCMP_NFKC
) {
1887 flag
= U8_STRCMP_CS
;
1891 if (flag
== U8_STRCMP_CS
) {
1892 return (n
== 0 ? strcmp(s1
, s2
) : strncmp(s1
, s2
, n
));
1905 * Simple case conversion can be done much faster and so we do
1906 * them separately here.
1908 if (flag
== U8_STRCMP_CI_UPPER
) {
1909 return (do_case_compare(uv
, (uchar_t
*)s1
, (uchar_t
*)s2
,
1910 n1
, n2
, B_TRUE
, errnum
));
1911 } else if (flag
== U8_STRCMP_CI_LOWER
) {
1912 return (do_case_compare(uv
, (uchar_t
*)s1
, (uchar_t
*)s2
,
1913 n1
, n2
, B_FALSE
, errnum
));
1916 return (do_norm_compare(uv
, (uchar_t
*)s1
, (uchar_t
*)s2
, n1
, n2
,
1921 u8_textprep_str(char *inarray
, size_t *inlen
, char *outarray
, size_t *outlen
,
1922 int flag
, size_t unicode_version
, int *errnum
)
1930 boolean_t do_not_ignore_null
;
1931 boolean_t do_not_ignore_invalid
;
1932 boolean_t is_it_toupper
;
1933 boolean_t is_it_tolower
;
1934 boolean_t canonical_decomposition
;
1935 boolean_t compatibility_decomposition
;
1936 boolean_t canonical_composition
;
1940 uchar_t u8s
[U8_STREAM_SAFE_TEXT_MAX
+ 1];
1941 u8_normalization_states_t state
;
1943 if (unicode_version
> U8_UNICODE_LATEST
) {
1945 return ((size_t)-1);
1948 f
= flag
& (U8_TEXTPREP_TOUPPER
| U8_TEXTPREP_TOLOWER
);
1949 if (f
== (U8_TEXTPREP_TOUPPER
| U8_TEXTPREP_TOLOWER
)) {
1951 return ((size_t)-1);
1954 f
= flag
& (U8_CANON_DECOMP
| U8_COMPAT_DECOMP
| U8_CANON_COMP
);
1955 if (f
&& f
!= U8_TEXTPREP_NFD
&& f
!= U8_TEXTPREP_NFC
&&
1956 f
!= U8_TEXTPREP_NFKD
&& f
!= U8_TEXTPREP_NFKC
) {
1958 return ((size_t)-1);
1961 if (inarray
== NULL
|| *inlen
== 0)
1964 if (outarray
== NULL
) {
1966 return ((size_t)-1);
1969 ib
= (uchar_t
*)inarray
;
1970 ob
= (uchar_t
*)outarray
;
1971 ibtail
= ib
+ *inlen
;
1972 obtail
= ob
+ *outlen
;
1974 do_not_ignore_null
= !(flag
& U8_TEXTPREP_IGNORE_NULL
);
1975 do_not_ignore_invalid
= !(flag
& U8_TEXTPREP_IGNORE_INVALID
);
1976 is_it_toupper
= flag
& U8_TEXTPREP_TOUPPER
;
1977 is_it_tolower
= flag
& U8_TEXTPREP_TOLOWER
;
1982 * If we don't have a normalization flag set, we do the simple case
1983 * conversion based text preparation separately below. Text
1984 * preparation involving Normalization will be done in the false task
1985 * block, again, separately since it will take much more time and
1986 * resource than doing simple case conversions.
1989 while (ib
< ibtail
) {
1990 if (*ib
== '\0' && do_not_ignore_null
)
1993 sz
= u8_number_of_bytes
[*ib
];
1996 if (do_not_ignore_invalid
) {
1998 ret_val
= (size_t)-1;
2009 ret_val
= (size_t)-1;
2014 *ob
= U8_ASCII_TOUPPER(*ib
);
2015 else if (is_it_tolower
)
2016 *ob
= U8_ASCII_TOLOWER(*ib
);
2021 } else if ((ib
+ sz
) > ibtail
) {
2022 if (do_not_ignore_invalid
) {
2024 ret_val
= (size_t)-1;
2028 if ((obtail
- ob
) < (ibtail
- ib
)) {
2030 ret_val
= (size_t)-1;
2035 * We treat the remaining incomplete character
2036 * bytes as a character.
2043 if (is_it_toupper
|| is_it_tolower
) {
2044 i
= do_case_conv(unicode_version
, u8s
,
2045 ib
, sz
, is_it_toupper
);
2047 if ((obtail
- ob
) < i
) {
2049 ret_val
= (size_t)-1;
2055 for (sz
= 0; sz
< i
; sz
++)
2058 if ((obtail
- ob
) < sz
) {
2060 ret_val
= (size_t)-1;
2064 for (i
= 0; i
< sz
; i
++)
2070 canonical_decomposition
= flag
& U8_CANON_DECOMP
;
2071 compatibility_decomposition
= flag
& U8_COMPAT_DECOMP
;
2072 canonical_composition
= flag
& U8_CANON_COMP
;
2074 while (ib
< ibtail
) {
2075 if (*ib
== '\0' && do_not_ignore_null
)
2079 * If the current character is a 7-bit ASCII
2080 * character and it is the last character, or,
2081 * if the current character is a 7-bit ASCII
2082 * character and the next character is also a 7-bit
2083 * ASCII character, then, we copy over this
2084 * character without going through collect_a_seq().
2086 * In any other cases, we need to look further with
2087 * the collect_a_seq() function.
2089 if (U8_ISASCII(*ib
) && ((ib
+ 1) >= ibtail
||
2090 ((ib
+ 1) < ibtail
&& U8_ISASCII(*(ib
+ 1))))) {
2093 ret_val
= (size_t)-1;
2098 *ob
= U8_ASCII_TOUPPER(*ib
);
2099 else if (is_it_tolower
)
2100 *ob
= U8_ASCII_TOLOWER(*ib
);
2107 state
= U8_STATE_START
;
2109 j
= collect_a_seq(unicode_version
, u8s
,
2113 canonical_decomposition
,
2114 compatibility_decomposition
,
2115 canonical_composition
,
2118 if (*errnum
&& do_not_ignore_invalid
) {
2119 ret_val
= (size_t)-1;
2123 if ((obtail
- ob
) < j
) {
2125 ret_val
= (size_t)-1;
2129 for (i
= 0; i
< j
; i
++)
2135 *inlen
= ibtail
- ib
;
2136 *outlen
= obtail
- ob
;
2141 EXPORT_SYMBOL(u8_validate
);
2142 EXPORT_SYMBOL(u8_strcmp
);
2143 EXPORT_SYMBOL(u8_textprep_str
);