4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
33 /* Portions Copyright 2010 Robert Milkowski */
39 * This file describes the interface that the DMU provides for its
42 * The DMU also interacts with the SPA. That interface is described in
46 #include <sys/zfs_context.h>
47 #include <sys/inttypes.h>
49 #include <sys/fs/zfs.h>
50 #include <sys/zio_compress.h>
51 #include <sys/zio_priority.h>
53 #include <sys/zfs_file.h>
71 struct zbookmark_phys
;
77 struct dsl_crypto_params
;
80 typedef struct objset objset_t
;
81 typedef struct dmu_tx dmu_tx_t
;
82 typedef struct dsl_dir dsl_dir_t
;
83 typedef struct dnode dnode_t
;
85 typedef enum dmu_object_byteswap
{
97 * Allocating a new byteswap type number makes the on-disk format
98 * incompatible with any other format that uses the same number.
100 * Data can usually be structured to work with one of the
101 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
104 } dmu_object_byteswap_t
;
106 #define DMU_OT_NEWTYPE 0x80
107 #define DMU_OT_METADATA 0x40
108 #define DMU_OT_ENCRYPTED 0x20
109 #define DMU_OT_BYTESWAP_MASK 0x1f
112 * Defines a uint8_t object type. Object types specify if the data
113 * in the object is metadata (boolean) and how to byteswap the data
114 * (dmu_object_byteswap_t). All of the types created by this method
115 * are cached in the dbuf metadata cache.
117 #define DMU_OT(byteswap, metadata, encrypted) \
119 ((metadata) ? DMU_OT_METADATA : 0) | \
120 ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
121 ((byteswap) & DMU_OT_BYTESWAP_MASK))
123 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
124 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
125 (ot) < DMU_OT_NUMTYPES)
127 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
128 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
131 * MDB doesn't have dmu_ot; it defines these macros itself.
134 #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
135 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
136 #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
139 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
140 (((ot) & DMU_OT_METADATA) != 0) : \
141 DMU_OT_IS_METADATA_IMPL(ot))
143 #define DMU_OT_IS_DDT(ot) \
144 ((ot) == DMU_OT_DDT_ZAP)
146 #define DMU_OT_IS_CRITICAL(ot) \
147 (DMU_OT_IS_METADATA(ot) && \
148 (ot) != DMU_OT_DNODE && \
149 (ot) != DMU_OT_DIRECTORY_CONTENTS && \
152 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
153 #define DMU_OT_IS_FILE(ot) \
154 ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
156 #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
157 (((ot) & DMU_OT_ENCRYPTED) != 0) : \
158 DMU_OT_IS_ENCRYPTED_IMPL(ot))
161 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
162 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
163 * is repurposed for embedded BPs.
165 #define DMU_OT_HAS_FILL(ot) \
166 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
168 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
169 ((ot) & DMU_OT_BYTESWAP_MASK) : \
170 DMU_OT_BYTESWAP_IMPL(ot))
172 typedef enum dmu_object_type
{
175 DMU_OT_OBJECT_DIRECTORY
, /* ZAP */
176 DMU_OT_OBJECT_ARRAY
, /* UINT64 */
177 DMU_OT_PACKED_NVLIST
, /* UINT8 (XDR by nvlist_pack/unpack) */
178 DMU_OT_PACKED_NVLIST_SIZE
, /* UINT64 */
179 DMU_OT_BPOBJ
, /* UINT64 */
180 DMU_OT_BPOBJ_HDR
, /* UINT64 */
182 DMU_OT_SPACE_MAP_HEADER
, /* UINT64 */
183 DMU_OT_SPACE_MAP
, /* UINT64 */
185 DMU_OT_INTENT_LOG
, /* UINT64 */
187 DMU_OT_DNODE
, /* DNODE */
188 DMU_OT_OBJSET
, /* OBJSET */
190 DMU_OT_DSL_DIR
, /* UINT64 */
191 DMU_OT_DSL_DIR_CHILD_MAP
, /* ZAP */
192 DMU_OT_DSL_DS_SNAP_MAP
, /* ZAP */
193 DMU_OT_DSL_PROPS
, /* ZAP */
194 DMU_OT_DSL_DATASET
, /* UINT64 */
196 DMU_OT_ZNODE
, /* ZNODE */
197 DMU_OT_OLDACL
, /* Old ACL */
198 DMU_OT_PLAIN_FILE_CONTENTS
, /* UINT8 */
199 DMU_OT_DIRECTORY_CONTENTS
, /* ZAP */
200 DMU_OT_MASTER_NODE
, /* ZAP */
201 DMU_OT_UNLINKED_SET
, /* ZAP */
203 DMU_OT_ZVOL
, /* UINT8 */
204 DMU_OT_ZVOL_PROP
, /* ZAP */
205 /* other; for testing only! */
206 DMU_OT_PLAIN_OTHER
, /* UINT8 */
207 DMU_OT_UINT64_OTHER
, /* UINT64 */
208 DMU_OT_ZAP_OTHER
, /* ZAP */
209 /* new object types: */
210 DMU_OT_ERROR_LOG
, /* ZAP */
211 DMU_OT_SPA_HISTORY
, /* UINT8 */
212 DMU_OT_SPA_HISTORY_OFFSETS
, /* spa_his_phys_t */
213 DMU_OT_POOL_PROPS
, /* ZAP */
214 DMU_OT_DSL_PERMS
, /* ZAP */
215 DMU_OT_ACL
, /* ACL */
216 DMU_OT_SYSACL
, /* SYSACL */
217 DMU_OT_FUID
, /* FUID table (Packed NVLIST UINT8) */
218 DMU_OT_FUID_SIZE
, /* FUID table size UINT64 */
219 DMU_OT_NEXT_CLONES
, /* ZAP */
220 DMU_OT_SCAN_QUEUE
, /* ZAP */
221 DMU_OT_USERGROUP_USED
, /* ZAP */
222 DMU_OT_USERGROUP_QUOTA
, /* ZAP */
223 DMU_OT_USERREFS
, /* ZAP */
224 DMU_OT_DDT_ZAP
, /* ZAP */
225 DMU_OT_DDT_STATS
, /* ZAP */
226 DMU_OT_SA
, /* System attr */
227 DMU_OT_SA_MASTER_NODE
, /* ZAP */
228 DMU_OT_SA_ATTR_REGISTRATION
, /* ZAP */
229 DMU_OT_SA_ATTR_LAYOUTS
, /* ZAP */
230 DMU_OT_SCAN_XLATE
, /* ZAP */
231 DMU_OT_DEDUP
, /* fake dedup BP from ddt_bp_create() */
232 DMU_OT_DEADLIST
, /* ZAP */
233 DMU_OT_DEADLIST_HDR
, /* UINT64 */
234 DMU_OT_DSL_CLONES
, /* ZAP */
235 DMU_OT_BPOBJ_SUBOBJ
, /* UINT64 */
237 * Do not allocate new object types here. Doing so makes the on-disk
238 * format incompatible with any other format that uses the same object
241 * When creating an object which does not have one of the above types
242 * use the DMU_OTN_* type with the correct byteswap and metadata
245 * The DMU_OTN_* types do not have entries in the dmu_ot table,
246 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
247 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
248 * and DMU_OTN_* types).
253 * Names for valid types declared with DMU_OT().
255 DMU_OTN_UINT8_DATA
= DMU_OT(DMU_BSWAP_UINT8
, B_FALSE
, B_FALSE
),
256 DMU_OTN_UINT8_METADATA
= DMU_OT(DMU_BSWAP_UINT8
, B_TRUE
, B_FALSE
),
257 DMU_OTN_UINT16_DATA
= DMU_OT(DMU_BSWAP_UINT16
, B_FALSE
, B_FALSE
),
258 DMU_OTN_UINT16_METADATA
= DMU_OT(DMU_BSWAP_UINT16
, B_TRUE
, B_FALSE
),
259 DMU_OTN_UINT32_DATA
= DMU_OT(DMU_BSWAP_UINT32
, B_FALSE
, B_FALSE
),
260 DMU_OTN_UINT32_METADATA
= DMU_OT(DMU_BSWAP_UINT32
, B_TRUE
, B_FALSE
),
261 DMU_OTN_UINT64_DATA
= DMU_OT(DMU_BSWAP_UINT64
, B_FALSE
, B_FALSE
),
262 DMU_OTN_UINT64_METADATA
= DMU_OT(DMU_BSWAP_UINT64
, B_TRUE
, B_FALSE
),
263 DMU_OTN_ZAP_DATA
= DMU_OT(DMU_BSWAP_ZAP
, B_FALSE
, B_FALSE
),
264 DMU_OTN_ZAP_METADATA
= DMU_OT(DMU_BSWAP_ZAP
, B_TRUE
, B_FALSE
),
266 DMU_OTN_UINT8_ENC_DATA
= DMU_OT(DMU_BSWAP_UINT8
, B_FALSE
, B_TRUE
),
267 DMU_OTN_UINT8_ENC_METADATA
= DMU_OT(DMU_BSWAP_UINT8
, B_TRUE
, B_TRUE
),
268 DMU_OTN_UINT16_ENC_DATA
= DMU_OT(DMU_BSWAP_UINT16
, B_FALSE
, B_TRUE
),
269 DMU_OTN_UINT16_ENC_METADATA
= DMU_OT(DMU_BSWAP_UINT16
, B_TRUE
, B_TRUE
),
270 DMU_OTN_UINT32_ENC_DATA
= DMU_OT(DMU_BSWAP_UINT32
, B_FALSE
, B_TRUE
),
271 DMU_OTN_UINT32_ENC_METADATA
= DMU_OT(DMU_BSWAP_UINT32
, B_TRUE
, B_TRUE
),
272 DMU_OTN_UINT64_ENC_DATA
= DMU_OT(DMU_BSWAP_UINT64
, B_FALSE
, B_TRUE
),
273 DMU_OTN_UINT64_ENC_METADATA
= DMU_OT(DMU_BSWAP_UINT64
, B_TRUE
, B_TRUE
),
274 DMU_OTN_ZAP_ENC_DATA
= DMU_OT(DMU_BSWAP_ZAP
, B_FALSE
, B_TRUE
),
275 DMU_OTN_ZAP_ENC_METADATA
= DMU_OT(DMU_BSWAP_ZAP
, B_TRUE
, B_TRUE
),
279 * These flags are intended to be used to specify the "txg_how"
280 * parameter when calling the dmu_tx_assign() function. See the comment
281 * above dmu_tx_assign() for more details on the meaning of these flags.
283 #define TXG_NOWAIT (0ULL)
284 #define TXG_WAIT (1ULL<<0)
285 #define TXG_NOTHROTTLE (1ULL<<1)
287 void byteswap_uint64_array(void *buf
, size_t size
);
288 void byteswap_uint32_array(void *buf
, size_t size
);
289 void byteswap_uint16_array(void *buf
, size_t size
);
290 void byteswap_uint8_array(void *buf
, size_t size
);
291 void zap_byteswap(void *buf
, size_t size
);
292 void zfs_oldacl_byteswap(void *buf
, size_t size
);
293 void zfs_acl_byteswap(void *buf
, size_t size
);
294 void zfs_znode_byteswap(void *buf
, size_t size
);
296 #define DS_FIND_SNAPSHOTS (1<<0)
297 #define DS_FIND_CHILDREN (1<<1)
298 #define DS_FIND_SERIALIZE (1<<2)
301 * The maximum number of bytes that can be accessed as part of one
302 * operation, including metadata.
304 #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
305 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
307 #define DMU_USERUSED_OBJECT (-1ULL)
308 #define DMU_GROUPUSED_OBJECT (-2ULL)
309 #define DMU_PROJECTUSED_OBJECT (-3ULL)
312 * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
314 #define DMU_OBJACCT_PREFIX "obj-"
315 #define DMU_OBJACCT_PREFIX_LEN 4
318 * artificial blkids for bonus buffer and spill blocks
320 #define DMU_BONUS_BLKID (-1ULL)
321 #define DMU_SPILL_BLKID (-2ULL)
324 * Public routines to create, destroy, open, and close objsets.
326 typedef void dmu_objset_create_sync_func_t(objset_t
*os
, void *arg
,
327 cred_t
*cr
, dmu_tx_t
*tx
);
329 int dmu_objset_hold(const char *name
, const void *tag
, objset_t
**osp
);
330 int dmu_objset_own(const char *name
, dmu_objset_type_t type
,
331 boolean_t readonly
, boolean_t key_required
, const void *tag
,
333 void dmu_objset_rele(objset_t
*os
, const void *tag
);
334 void dmu_objset_disown(objset_t
*os
, boolean_t key_required
, const void *tag
);
335 int dmu_objset_open_ds(struct dsl_dataset
*ds
, objset_t
**osp
);
337 void dmu_objset_evict_dbufs(objset_t
*os
);
338 int dmu_objset_create(const char *name
, dmu_objset_type_t type
, uint64_t flags
,
339 struct dsl_crypto_params
*dcp
, dmu_objset_create_sync_func_t func
,
341 int dmu_objset_clone(const char *name
, const char *origin
);
342 int dsl_destroy_snapshots_nvl(struct nvlist
*snaps
, boolean_t defer
,
343 struct nvlist
*errlist
);
344 int dmu_objset_snapshot_one(const char *fsname
, const char *snapname
);
345 int dmu_objset_find(const char *name
, int func(const char *, void *), void *arg
,
347 void dmu_objset_byteswap(void *buf
, size_t size
);
348 int dsl_dataset_rename_snapshot(const char *fsname
,
349 const char *oldsnapname
, const char *newsnapname
, boolean_t recursive
);
351 typedef struct dmu_buf
{
352 uint64_t db_object
; /* object that this buffer is part of */
353 uint64_t db_offset
; /* byte offset in this object */
354 uint64_t db_size
; /* size of buffer in bytes */
355 void *db_data
; /* data in buffer */
359 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
361 #define DMU_POOL_DIRECTORY_OBJECT 1
362 #define DMU_POOL_CONFIG "config"
363 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
364 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
365 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
366 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
367 #define DMU_POOL_ROOT_DATASET "root_dataset"
368 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
369 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
370 #define DMU_POOL_ERRLOG_LAST "errlog_last"
371 #define DMU_POOL_SPARES "spares"
372 #define DMU_POOL_DEFLATE "deflate"
373 #define DMU_POOL_HISTORY "history"
374 #define DMU_POOL_PROPS "pool_props"
375 #define DMU_POOL_L2CACHE "l2cache"
376 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
377 #define DMU_POOL_DDT "DDT-%s-%s-%s"
378 #define DMU_POOL_DDT_LOG "DDT-log-%s-%u"
379 #define DMU_POOL_DDT_STATS "DDT-statistics"
380 #define DMU_POOL_DDT_DIR "DDT-%s"
381 #define DMU_POOL_CREATION_VERSION "creation_version"
382 #define DMU_POOL_SCAN "scan"
383 #define DMU_POOL_ERRORSCRUB "error_scrub"
384 #define DMU_POOL_LAST_SCRUBBED_TXG "last_scrubbed_txg"
385 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
386 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
387 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
388 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
389 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
390 #define DMU_POOL_REMOVING "com.delphix:removing"
391 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
392 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
393 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint"
394 #define DMU_POOL_LOG_SPACEMAP_ZAP "com.delphix:log_spacemap_zap"
395 #define DMU_POOL_DELETED_CLONES "com.delphix:deleted_clones"
398 * Allocate an object from this objset. The range of object numbers
399 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
401 * The transaction must be assigned to a txg. The newly allocated
402 * object will be "held" in the transaction (ie. you can modify the
403 * newly allocated object in this transaction).
405 * dmu_object_alloc() chooses an object and returns it in *objectp.
407 * dmu_object_claim() allocates a specific object number. If that
408 * number is already allocated, it fails and returns EEXIST.
410 * Return 0 on success, or ENOSPC or EEXIST as specified above.
412 uint64_t dmu_object_alloc(objset_t
*os
, dmu_object_type_t ot
,
413 int blocksize
, dmu_object_type_t bonus_type
, int bonus_len
, dmu_tx_t
*tx
);
414 uint64_t dmu_object_alloc_ibs(objset_t
*os
, dmu_object_type_t ot
, int blocksize
,
415 int indirect_blockshift
,
416 dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*tx
);
417 uint64_t dmu_object_alloc_dnsize(objset_t
*os
, dmu_object_type_t ot
,
418 int blocksize
, dmu_object_type_t bonus_type
, int bonus_len
,
419 int dnodesize
, dmu_tx_t
*tx
);
420 uint64_t dmu_object_alloc_hold(objset_t
*os
, dmu_object_type_t ot
,
421 int blocksize
, int indirect_blockshift
, dmu_object_type_t bonustype
,
422 int bonuslen
, int dnodesize
, dnode_t
**allocated_dnode
, const void *tag
,
424 int dmu_object_claim(objset_t
*os
, uint64_t object
, dmu_object_type_t ot
,
425 int blocksize
, dmu_object_type_t bonus_type
, int bonus_len
, dmu_tx_t
*tx
);
426 int dmu_object_claim_dnsize(objset_t
*os
, uint64_t object
, dmu_object_type_t ot
,
427 int blocksize
, dmu_object_type_t bonus_type
, int bonus_len
,
428 int dnodesize
, dmu_tx_t
*tx
);
429 int dmu_object_reclaim(objset_t
*os
, uint64_t object
, dmu_object_type_t ot
,
430 int blocksize
, dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*txp
);
431 int dmu_object_reclaim_dnsize(objset_t
*os
, uint64_t object
,
432 dmu_object_type_t ot
, int blocksize
, dmu_object_type_t bonustype
,
433 int bonuslen
, int dnodesize
, boolean_t keep_spill
, dmu_tx_t
*tx
);
434 int dmu_object_rm_spill(objset_t
*os
, uint64_t object
, dmu_tx_t
*tx
);
437 * Free an object from this objset.
439 * The object's data will be freed as well (ie. you don't need to call
440 * dmu_free(object, 0, -1, tx)).
442 * The object need not be held in the transaction.
444 * If there are any holds on this object's buffers (via dmu_buf_hold()),
445 * or tx holds on the object (via dmu_tx_hold_object()), you can not
446 * free it; it fails and returns EBUSY.
448 * If the object is not allocated, it fails and returns ENOENT.
450 * Return 0 on success, or EBUSY or ENOENT as specified above.
452 int dmu_object_free(objset_t
*os
, uint64_t object
, dmu_tx_t
*tx
);
455 * Find the next allocated or free object.
457 * The objectp parameter is in-out. It will be updated to be the next
458 * object which is allocated. Ignore objects which have not been
459 * modified since txg.
461 * XXX Can only be called on a objset with no dirty data.
463 * Returns 0 on success, or ENOENT if there are no more objects.
465 int dmu_object_next(objset_t
*os
, uint64_t *objectp
,
466 boolean_t hole
, uint64_t txg
);
469 * Set the number of levels on a dnode. nlevels must be greater than the
470 * current number of levels or an EINVAL will be returned.
472 int dmu_object_set_nlevels(objset_t
*os
, uint64_t object
, int nlevels
,
476 * Set the data blocksize for an object.
478 * The object cannot have any blocks allocated beyond the first. If
479 * the first block is allocated already, the new size must be greater
480 * than the current block size. If these conditions are not met,
481 * ENOTSUP will be returned.
483 * Returns 0 on success, or EBUSY if there are any holds on the object
484 * contents, or ENOTSUP as described above.
486 int dmu_object_set_blocksize(objset_t
*os
, uint64_t object
, uint64_t size
,
487 int ibs
, dmu_tx_t
*tx
);
490 * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
491 * to accommodate the change. When calling this function, the caller must
492 * ensure that the object's nlevels can sufficiently support the new maxblkid.
494 int dmu_object_set_maxblkid(objset_t
*os
, uint64_t object
, uint64_t maxblkid
,
498 * Set the checksum property on a dnode. The new checksum algorithm will
499 * apply to all newly written blocks; existing blocks will not be affected.
501 void dmu_object_set_checksum(objset_t
*os
, uint64_t object
, uint8_t checksum
,
505 * Set the compress property on a dnode. The new compression algorithm will
506 * apply to all newly written blocks; existing blocks will not be affected.
508 void dmu_object_set_compress(objset_t
*os
, uint64_t object
, uint8_t compress
,
512 * Get an estimated cache size for an object. Caller must expect races.
514 int dmu_object_cached_size(objset_t
*os
, uint64_t object
,
515 uint64_t *l1sz
, uint64_t *l2sz
);
517 void dmu_write_embedded(objset_t
*os
, uint64_t object
, uint64_t offset
,
518 void *data
, uint8_t etype
, uint8_t comp
, int uncompressed_size
,
519 int compressed_size
, int byteorder
, dmu_tx_t
*tx
);
520 void dmu_redact(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
524 * Decide how to write a block: checksum, compression, number of copies, etc.
526 #define WP_NOFILL 0x1
527 #define WP_DMU_SYNC 0x2
529 #define WP_DIRECT_WR 0x8
531 void dmu_write_policy(objset_t
*os
, dnode_t
*dn
, int level
, int wp
,
532 struct zio_prop
*zp
);
535 * The bonus data is accessed more or less like a regular buffer.
536 * You must dmu_bonus_hold() to get the buffer, which will give you a
537 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
538 * data. As with any normal buffer, you must call dmu_buf_will_dirty()
539 * before modifying it, and the
540 * object must be held in an assigned transaction before calling
541 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
542 * buffer as well. You must release what you hold with dmu_buf_rele().
544 * Returns ENOENT, EIO, or 0.
546 int dmu_bonus_hold(objset_t
*os
, uint64_t object
, const void *tag
,
548 int dmu_bonus_hold_by_dnode(dnode_t
*dn
, const void *tag
, dmu_buf_t
**dbp
,
550 int dmu_bonus_max(void);
551 int dmu_set_bonus(dmu_buf_t
*, int, dmu_tx_t
*);
552 int dmu_set_bonustype(dmu_buf_t
*, dmu_object_type_t
, dmu_tx_t
*);
553 dmu_object_type_t
dmu_get_bonustype(dmu_buf_t
*);
554 int dmu_rm_spill(objset_t
*, uint64_t, dmu_tx_t
*);
557 * Special spill buffer support used by "SA" framework
560 int dmu_spill_hold_by_bonus(dmu_buf_t
*bonus
, uint32_t flags
, const void *tag
,
562 int dmu_spill_hold_by_dnode(dnode_t
*dn
, uint32_t flags
,
563 const void *tag
, dmu_buf_t
**dbp
);
564 int dmu_spill_hold_existing(dmu_buf_t
*bonus
, const void *tag
, dmu_buf_t
**dbp
);
567 * Obtain the DMU buffer from the specified object which contains the
568 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
569 * that it will remain in memory. You must release the hold with
570 * dmu_buf_rele(). You must not access the dmu_buf_t after releasing
571 * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
573 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
574 * on the returned buffer before reading or writing the buffer's
575 * db_data. The comments for those routines describe what particular
576 * operations are valid after calling them.
578 * The object number must be a valid, allocated object number.
580 int dmu_buf_hold(objset_t
*os
, uint64_t object
, uint64_t offset
,
581 const void *tag
, dmu_buf_t
**, int flags
);
582 int dmu_buf_hold_array(objset_t
*os
, uint64_t object
, uint64_t offset
,
583 uint64_t length
, int read
, const void *tag
, int *numbufsp
,
585 int dmu_buf_hold_noread(objset_t
*os
, uint64_t object
, uint64_t offset
,
586 const void *tag
, dmu_buf_t
**dbp
);
587 int dmu_buf_hold_by_dnode(dnode_t
*dn
, uint64_t offset
,
588 const void *tag
, dmu_buf_t
**dbp
, int flags
);
589 int dmu_buf_hold_array_by_dnode(dnode_t
*dn
, uint64_t offset
,
590 uint64_t length
, boolean_t read
, const void *tag
, int *numbufsp
,
591 dmu_buf_t
***dbpp
, uint32_t flags
);
592 int dmu_buf_hold_noread_by_dnode(dnode_t
*dn
, uint64_t offset
, const void *tag
,
596 * Add a reference to a dmu buffer that has already been held via
597 * dmu_buf_hold() in the current context.
599 void dmu_buf_add_ref(dmu_buf_t
*db
, const void *tag
);
602 * Attempt to add a reference to a dmu buffer that is in an unknown state,
603 * using a pointer that may have been invalidated by eviction processing.
604 * The request will succeed if the passed in dbuf still represents the
605 * same os/object/blkid, is ineligible for eviction, and has at least
606 * one hold by a user other than the syncer.
608 boolean_t
dmu_buf_try_add_ref(dmu_buf_t
*, objset_t
*os
, uint64_t object
,
609 uint64_t blkid
, const void *tag
);
611 void dmu_buf_rele(dmu_buf_t
*db
, const void *tag
);
612 uint64_t dmu_buf_refcount(dmu_buf_t
*db
);
613 uint64_t dmu_buf_user_refcount(dmu_buf_t
*db
);
616 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
617 * range of an object. A pointer to an array of dmu_buf_t*'s is
618 * returned (in *dbpp).
620 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
621 * frees the array. The hold on the array of buffers MUST be released
622 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
623 * individually with dmu_buf_rele.
625 int dmu_buf_hold_array_by_bonus(dmu_buf_t
*db
, uint64_t offset
,
626 uint64_t length
, boolean_t read
, const void *tag
,
627 int *numbufsp
, dmu_buf_t
***dbpp
);
628 void dmu_buf_rele_array(dmu_buf_t
**, int numbufs
, const void *tag
);
630 typedef void dmu_buf_evict_func_t(void *user_ptr
);
633 * A DMU buffer user object may be associated with a dbuf for the
634 * duration of its lifetime. This allows the user of a dbuf (client)
635 * to attach private data to a dbuf (e.g. in-core only data such as a
636 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
637 * when that dbuf has been evicted. Clients typically respond to the
638 * eviction notification by freeing their private data, thus ensuring
639 * the same lifetime for both dbuf and private data.
641 * The mapping from a dmu_buf_user_t to any client private data is the
642 * client's responsibility. All current consumers of the API with private
643 * data embed a dmu_buf_user_t as the first member of the structure for
644 * their private data. This allows conversions between the two types
645 * with a simple cast. Since the DMU buf user API never needs access
646 * to the private data, other strategies can be employed if necessary
647 * or convenient for the client (e.g. using container_of() to do the
648 * conversion for private data that cannot have the dmu_buf_user_t as
651 * Eviction callbacks are executed without the dbuf mutex held or any
652 * other type of mechanism to guarantee that the dbuf is still available.
653 * For this reason, users must assume the dbuf has already been freed
654 * and not reference the dbuf from the callback context.
656 * Users requesting "immediate eviction" are notified as soon as the dbuf
657 * is only referenced by dirty records (dirties == holds). Otherwise the
658 * notification occurs after eviction processing for the dbuf begins.
660 typedef struct dmu_buf_user
{
662 * Asynchronous user eviction callback state.
664 taskq_ent_t dbu_tqent
;
666 /* Size of user data, for inclusion in dbuf_cache accounting. */
670 * This instance's eviction function pointers.
672 * dbu_evict_func_sync is called synchronously and then
673 * dbu_evict_func_async is executed asynchronously on a taskq.
675 dmu_buf_evict_func_t
*dbu_evict_func_sync
;
676 dmu_buf_evict_func_t
*dbu_evict_func_async
;
679 * Pointer to user's dbuf pointer. NULL for clients that do
680 * not associate a dbuf with their user data.
682 * The dbuf pointer is cleared upon eviction so as to catch
683 * use-after-evict bugs in clients.
685 dmu_buf_t
**dbu_clear_on_evict_dbufp
;
690 * Initialize the given dmu_buf_user_t instance with the eviction function
691 * evict_func, to be called when the user is evicted.
693 * NOTE: This function should only be called once on a given dmu_buf_user_t.
694 * To allow enforcement of this, dbu must already be zeroed on entry.
697 dmu_buf_init_user(dmu_buf_user_t
*dbu
, dmu_buf_evict_func_t
*evict_func_sync
,
698 dmu_buf_evict_func_t
*evict_func_async
,
699 dmu_buf_t
**clear_on_evict_dbufp __maybe_unused
)
701 ASSERT(dbu
->dbu_evict_func_sync
== NULL
);
702 ASSERT(dbu
->dbu_evict_func_async
== NULL
);
704 /* must have at least one evict func */
705 IMPLY(evict_func_sync
== NULL
, evict_func_async
!= NULL
);
706 dbu
->dbu_evict_func_sync
= evict_func_sync
;
707 dbu
->dbu_evict_func_async
= evict_func_async
;
708 taskq_init_ent(&dbu
->dbu_tqent
);
710 dbu
->dbu_clear_on_evict_dbufp
= clear_on_evict_dbufp
;
715 * Attach user data to a dbuf and mark it for normal (when the dbuf's
716 * data is cleared or its reference count goes to zero) eviction processing.
718 * Returns NULL on success, or the existing user if another user currently
721 void *dmu_buf_set_user(dmu_buf_t
*db
, dmu_buf_user_t
*user
);
724 * Attach user data to a dbuf and mark it for immediate (its dirty and
725 * reference counts are equal) eviction processing.
727 * Returns NULL on success, or the existing user if another user currently
730 void *dmu_buf_set_user_ie(dmu_buf_t
*db
, dmu_buf_user_t
*user
);
733 * Replace the current user of a dbuf.
735 * If given the current user of a dbuf, replaces the dbuf's user with
736 * "new_user" and returns the user data pointer that was replaced.
737 * Otherwise returns the current, and unmodified, dbuf user pointer.
739 void *dmu_buf_replace_user(dmu_buf_t
*db
,
740 dmu_buf_user_t
*old_user
, dmu_buf_user_t
*new_user
);
743 * Remove the specified user data for a DMU buffer.
745 * Returns the user that was removed on success, or the current user if
746 * another user currently owns the buffer.
748 void *dmu_buf_remove_user(dmu_buf_t
*db
, dmu_buf_user_t
*user
);
751 * User data size accounting. This can be used to artifically inflate the size
752 * of the dbuf during cache accounting, so that dbuf_evict_thread evicts enough
753 * to satisfy memory reclaim requests. It's not used for anything else, and
756 uint64_t dmu_buf_user_size(dmu_buf_t
*db
);
757 void dmu_buf_add_user_size(dmu_buf_t
*db
, uint64_t nadd
);
758 void dmu_buf_sub_user_size(dmu_buf_t
*db
, uint64_t nsub
);
761 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
763 void *dmu_buf_get_user(dmu_buf_t
*db
);
765 objset_t
*dmu_buf_get_objset(dmu_buf_t
*db
);
767 /* Block until any in-progress dmu buf user evictions complete. */
768 void dmu_buf_user_evict_wait(void);
771 * Returns the blkptr associated with this dbuf, or NULL if not set.
773 struct blkptr
*dmu_buf_get_blkptr(dmu_buf_t
*db
);
776 * Indicate that you are going to modify the buffer's data (db_data).
778 * The transaction (tx) must be assigned to a txg (ie. you've called
779 * dmu_tx_assign()). The buffer's object must be held in the tx
780 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
782 void dmu_buf_will_dirty(dmu_buf_t
*db
, dmu_tx_t
*tx
);
783 boolean_t
dmu_buf_is_dirty(dmu_buf_t
*db
, dmu_tx_t
*tx
);
784 void dmu_buf_set_crypt_params(dmu_buf_t
*db_fake
, boolean_t byteorder
,
785 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
, dmu_tx_t
*tx
);
788 * You must create a transaction, then hold the objects which you will
789 * (or might) modify as part of this transaction. Then you must assign
790 * the transaction to a transaction group. Once the transaction has
791 * been assigned, you can modify buffers which belong to held objects as
792 * part of this transaction. You can't modify buffers before the
793 * transaction has been assigned; you can't modify buffers which don't
794 * belong to objects which this transaction holds; you can't hold
795 * objects once the transaction has been assigned. You may hold an
796 * object which you are going to free (with dmu_object_free()), but you
799 * You can abort the transaction before it has been assigned.
801 * Note that you may hold buffers (with dmu_buf_hold) at any time,
802 * regardless of transaction state.
805 #define DMU_NEW_OBJECT (-1ULL)
806 #define DMU_OBJECT_END (-1ULL)
808 dmu_tx_t
*dmu_tx_create(objset_t
*os
);
809 void dmu_tx_hold_write(dmu_tx_t
*tx
, uint64_t object
, uint64_t off
, int len
);
810 void dmu_tx_hold_write_by_dnode(dmu_tx_t
*tx
, dnode_t
*dn
, uint64_t off
,
812 void dmu_tx_hold_append(dmu_tx_t
*tx
, uint64_t object
, uint64_t off
, int len
);
813 void dmu_tx_hold_append_by_dnode(dmu_tx_t
*tx
, dnode_t
*dn
, uint64_t off
,
815 void dmu_tx_hold_clone_by_dnode(dmu_tx_t
*tx
, dnode_t
*dn
, uint64_t off
,
817 void dmu_tx_hold_free(dmu_tx_t
*tx
, uint64_t object
, uint64_t off
,
819 void dmu_tx_hold_free_by_dnode(dmu_tx_t
*tx
, dnode_t
*dn
, uint64_t off
,
821 void dmu_tx_hold_zap(dmu_tx_t
*tx
, uint64_t object
, int add
, const char *name
);
822 void dmu_tx_hold_zap_by_dnode(dmu_tx_t
*tx
, dnode_t
*dn
, int add
,
824 void dmu_tx_hold_bonus(dmu_tx_t
*tx
, uint64_t object
);
825 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t
*tx
, dnode_t
*dn
);
826 void dmu_tx_hold_spill(dmu_tx_t
*tx
, uint64_t object
);
827 void dmu_tx_hold_sa(dmu_tx_t
*tx
, struct sa_handle
*hdl
, boolean_t may_grow
);
828 void dmu_tx_hold_sa_create(dmu_tx_t
*tx
, int total_size
);
829 void dmu_tx_abort(dmu_tx_t
*tx
);
830 int dmu_tx_assign(dmu_tx_t
*tx
, uint64_t txg_how
);
831 void dmu_tx_wait(dmu_tx_t
*tx
);
832 void dmu_tx_commit(dmu_tx_t
*tx
);
833 void dmu_tx_mark_netfree(dmu_tx_t
*tx
);
836 * To register a commit callback, dmu_tx_callback_register() must be called.
838 * dcb_data is a pointer to caller private data that is passed on as a
839 * callback parameter. The caller is responsible for properly allocating and
842 * When registering a callback, the transaction must be already created, but
843 * it cannot be committed or aborted. It can be assigned to a txg or not.
845 * The callback will be called after the transaction has been safely written
846 * to stable storage and will also be called if the dmu_tx is aborted.
847 * If there is any error which prevents the transaction from being committed to
848 * disk, the callback will be called with a value of error != 0.
850 * When multiple callbacks are registered to the transaction, the callbacks
851 * will be called in reverse order to let Lustre, the only user of commit
852 * callback currently, take the fast path of its commit callback handling.
854 typedef void dmu_tx_callback_func_t(void *dcb_data
, int error
);
856 void dmu_tx_callback_register(dmu_tx_t
*tx
, dmu_tx_callback_func_t
*dcb_func
,
858 void dmu_tx_do_callbacks(list_t
*cb_list
, int error
);
861 * Free up the data blocks for a defined range of a file. If size is
862 * -1, the range from offset to end-of-file is freed.
864 int dmu_free_range(objset_t
*os
, uint64_t object
, uint64_t offset
,
865 uint64_t size
, dmu_tx_t
*tx
);
866 int dmu_free_long_range(objset_t
*os
, uint64_t object
, uint64_t offset
,
868 int dmu_free_long_object(objset_t
*os
, uint64_t object
);
871 * Convenience functions.
873 * Canfail routines will return 0 on success, or an errno if there is a
874 * nonrecoverable I/O error.
876 #define DMU_READ_PREFETCH 0 /* prefetch */
877 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
878 #define DMU_READ_NO_DECRYPT 2 /* don't decrypt */
879 #define DMU_DIRECTIO 4 /* use Direct I/O */
881 int dmu_read(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
882 void *buf
, uint32_t flags
);
883 int dmu_read_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
, void *buf
,
885 void dmu_write(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
886 const void *buf
, dmu_tx_t
*tx
);
887 int dmu_write_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
888 const void *buf
, dmu_tx_t
*tx
);
889 int dmu_write_by_dnode_flags(dnode_t
*dn
, uint64_t offset
, uint64_t size
,
890 const void *buf
, dmu_tx_t
*tx
, uint32_t flags
);
891 void dmu_prealloc(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
894 int dmu_read_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
);
895 int dmu_read_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
);
896 int dmu_read_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
);
897 int dmu_write_uio(objset_t
*os
, uint64_t object
, zfs_uio_t
*uio
, uint64_t size
,
899 int dmu_write_uio_dbuf(dmu_buf_t
*zdb
, zfs_uio_t
*uio
, uint64_t size
,
901 int dmu_write_uio_dnode(dnode_t
*dn
, zfs_uio_t
*uio
, uint64_t size
,
904 struct arc_buf
*dmu_request_arcbuf(dmu_buf_t
*handle
, int size
);
905 void dmu_return_arcbuf(struct arc_buf
*buf
);
906 int dmu_assign_arcbuf_by_dnode(dnode_t
*dn
, uint64_t offset
,
907 struct arc_buf
*buf
, dmu_tx_t
*tx
);
908 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t
*handle
, uint64_t offset
,
909 struct arc_buf
*buf
, dmu_tx_t
*tx
);
910 #define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf
911 extern uint_t zfs_max_recordsize
;
914 * Asynchronously try to read in the data.
916 void dmu_prefetch(objset_t
*os
, uint64_t object
, int64_t level
, uint64_t offset
,
917 uint64_t len
, enum zio_priority pri
);
918 void dmu_prefetch_by_dnode(dnode_t
*dn
, int64_t level
, uint64_t offset
,
919 uint64_t len
, enum zio_priority pri
);
920 void dmu_prefetch_dnode(objset_t
*os
, uint64_t object
, enum zio_priority pri
);
921 int dmu_prefetch_wait(objset_t
*os
, uint64_t object
, uint64_t offset
,
924 typedef struct dmu_object_info
{
925 /* All sizes are in bytes unless otherwise indicated. */
926 uint32_t doi_data_block_size
;
927 uint32_t doi_metadata_block_size
;
928 dmu_object_type_t doi_type
;
929 dmu_object_type_t doi_bonus_type
;
930 uint64_t doi_bonus_size
;
931 uint8_t doi_indirection
; /* 2 = dnode->indirect->data */
932 uint8_t doi_checksum
;
933 uint8_t doi_compress
;
936 uint64_t doi_dnodesize
;
937 uint64_t doi_physical_blocks_512
; /* data + metadata, 512b blks */
938 uint64_t doi_max_offset
;
939 uint64_t doi_fill_count
; /* number of non-empty blocks */
942 typedef void (*const arc_byteswap_func_t
)(void *buf
, size_t size
);
944 typedef struct dmu_object_type_info
{
945 dmu_object_byteswap_t ot_byteswap
;
946 boolean_t ot_metadata
;
947 boolean_t ot_dbuf_metadata_cache
;
948 boolean_t ot_encrypt
;
950 } dmu_object_type_info_t
;
952 typedef const struct dmu_object_byteswap_info
{
953 arc_byteswap_func_t ob_func
;
955 } dmu_object_byteswap_info_t
;
957 extern const dmu_object_type_info_t dmu_ot
[DMU_OT_NUMTYPES
];
958 extern dmu_object_byteswap_info_t dmu_ot_byteswap
[DMU_BSWAP_NUMFUNCS
];
961 * Get information on a DMU object.
963 * Return 0 on success or ENOENT if object is not allocated.
965 * If doi is NULL, just indicates whether the object exists.
967 int dmu_object_info(objset_t
*os
, uint64_t object
, dmu_object_info_t
*doi
);
968 void __dmu_object_info_from_dnode(struct dnode
*dn
, dmu_object_info_t
*doi
);
969 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
970 void dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
);
971 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
972 void dmu_object_info_from_db(dmu_buf_t
*db
, dmu_object_info_t
*doi
);
974 * Like dmu_object_info_from_db, but faster still when you only care about
977 void dmu_object_size_from_db(dmu_buf_t
*db
, uint32_t *blksize
,
978 u_longlong_t
*nblk512
);
980 void dmu_object_dnsize_from_db(dmu_buf_t
*db
, int *dnsize
);
982 typedef struct dmu_objset_stats
{
983 uint64_t dds_num_clones
; /* number of clones of this */
984 uint64_t dds_creation_txg
;
986 dmu_objset_type_t dds_type
;
987 uint8_t dds_is_snapshot
;
988 uint8_t dds_inconsistent
;
989 uint8_t dds_redacted
;
990 char dds_origin
[ZFS_MAX_DATASET_NAME_LEN
];
991 } dmu_objset_stats_t
;
994 * Get stats on a dataset.
996 void dmu_objset_fast_stat(objset_t
*os
, dmu_objset_stats_t
*stat
);
999 * Add entries to the nvlist for all the objset's properties. See
1000 * zfs_prop_table[] and zfs(1m) for details on the properties.
1002 void dmu_objset_stats(objset_t
*os
, struct nvlist
*nv
);
1005 * Get the space usage statistics for statvfs().
1007 * refdbytes is the amount of space "referenced" by this objset.
1008 * availbytes is the amount of space available to this objset, taking
1009 * into account quotas & reservations, assuming that no other objsets
1010 * use the space first. These values correspond to the 'referenced' and
1011 * 'available' properties, described in the zfs(1m) manpage.
1013 * usedobjs and availobjs are the number of objects currently allocated,
1016 void dmu_objset_space(objset_t
*os
, uint64_t *refdbytesp
, uint64_t *availbytesp
,
1017 uint64_t *usedobjsp
, uint64_t *availobjsp
);
1020 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
1021 * (Contrast with the ds_guid which is a 64-bit ID that will never
1022 * change, so there is a small probability that it will collide.)
1024 uint64_t dmu_objset_fsid_guid(objset_t
*os
);
1027 * Get the [cm]time for an objset's snapshot dir
1029 inode_timespec_t
dmu_objset_snap_cmtime(objset_t
*os
);
1031 int dmu_objset_is_snapshot(objset_t
*os
);
1033 extern struct spa
*dmu_objset_spa(objset_t
*os
);
1034 extern struct zilog
*dmu_objset_zil(objset_t
*os
);
1035 extern struct dsl_pool
*dmu_objset_pool(objset_t
*os
);
1036 extern struct dsl_dataset
*dmu_objset_ds(objset_t
*os
);
1037 extern void dmu_objset_name(objset_t
*os
, char *buf
);
1038 extern dmu_objset_type_t
dmu_objset_type(objset_t
*os
);
1039 extern uint64_t dmu_objset_id(objset_t
*os
);
1040 extern uint64_t dmu_objset_dnodesize(objset_t
*os
);
1041 extern zfs_sync_type_t
dmu_objset_syncprop(objset_t
*os
);
1042 extern zfs_logbias_op_t
dmu_objset_logbias(objset_t
*os
);
1043 extern int dmu_objset_blksize(objset_t
*os
);
1044 extern int dmu_snapshot_list_next(objset_t
*os
, int namelen
, char *name
,
1045 uint64_t *id
, uint64_t *offp
, boolean_t
*case_conflict
);
1046 extern int dmu_snapshot_lookup(objset_t
*os
, const char *name
, uint64_t *val
);
1047 extern int dmu_snapshot_realname(objset_t
*os
, const char *name
, char *real
,
1048 int maxlen
, boolean_t
*conflict
);
1049 extern int dmu_dir_list_next(objset_t
*os
, int namelen
, char *name
,
1050 uint64_t *idp
, uint64_t *offp
);
1052 typedef struct zfs_file_info
{
1055 uint64_t zfi_project
;
1056 uint64_t zfi_generation
;
1059 typedef int file_info_cb_t(dmu_object_type_t bonustype
, const void *data
,
1060 struct zfs_file_info
*zoi
);
1061 extern void dmu_objset_register_type(dmu_objset_type_t ost
,
1062 file_info_cb_t
*cb
);
1063 extern void dmu_objset_set_user(objset_t
*os
, void *user_ptr
);
1064 extern void *dmu_objset_get_user(objset_t
*os
);
1067 * Return the txg number for the given assigned transaction.
1069 uint64_t dmu_tx_get_txg(dmu_tx_t
*tx
);
1072 * Synchronous write.
1073 * If a parent zio is provided this function initiates a write on the
1074 * provided buffer as a child of the parent zio.
1075 * In the absence of a parent zio, the write is completed synchronously.
1076 * At write completion, blk is filled with the bp of the written block.
1077 * Note that while the data covered by this function will be on stable
1078 * storage when the write completes this new data does not become a
1079 * permanent part of the file until the associated transaction commits.
1083 * {zfs,zvol,ztest}_get_done() args
1085 typedef struct zgd
{
1086 struct lwb
*zgd_lwb
;
1087 struct blkptr
*zgd_bp
;
1089 struct zfs_locked_range
*zgd_lr
;
1093 typedef void dmu_sync_cb_t(zgd_t
*arg
, int error
);
1094 int dmu_sync(struct zio
*zio
, uint64_t txg
, dmu_sync_cb_t
*done
, zgd_t
*zgd
);
1097 * Find the next hole or data block in file starting at *off
1098 * Return found offset in *off. Return ESRCH for end of file.
1100 int dmu_offset_next(objset_t
*os
, uint64_t object
, boolean_t hole
,
1103 int dmu_read_l0_bps(objset_t
*os
, uint64_t object
, uint64_t offset
,
1104 uint64_t length
, struct blkptr
*bps
, size_t *nbpsp
);
1105 int dmu_brt_clone(objset_t
*os
, uint64_t object
, uint64_t offset
,
1106 uint64_t length
, dmu_tx_t
*tx
, const struct blkptr
*bps
, size_t nbps
);
1109 * Initial setup and final teardown.
1111 extern void dmu_init(void);
1112 extern void dmu_fini(void);
1114 typedef void (*dmu_traverse_cb_t
)(objset_t
*os
, void *arg
, struct blkptr
*bp
,
1115 uint64_t object
, uint64_t offset
, int len
);
1116 void dmu_traverse_objset(objset_t
*os
, uint64_t txg_start
,
1117 dmu_traverse_cb_t cb
, void *arg
);
1119 int dmu_diff(const char *tosnap_name
, const char *fromsnap_name
,
1120 zfs_file_t
*fp
, offset_t
*offp
);
1123 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
1124 extern uint64_t zfs_crc64_table
[256];
1126 extern uint_t dmu_prefetch_max
;
1132 #endif /* _SYS_DMU_H */