Fix false assertion in dmu_tx_dirty_buf() on cloning
[zfs.git] / module / zfs / zio_inject.c
blob012a0e3c6c17207f4ce1a32b35897b2937203674
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2017, Intel Corporation.
25 * Copyright (c) 2024, Klara Inc.
29 * ZFS fault injection
31 * To handle fault injection, we keep track of a series of zinject_record_t
32 * structures which describe which logical block(s) should be injected with a
33 * fault. These are kept in a global list. Each record corresponds to a given
34 * spa_t and maintains a special hold on the spa_t so that it cannot be deleted
35 * or exported while the injection record exists.
37 * Device level injection is done using the 'zi_guid' field. If this is set, it
38 * means that the error is destined for a particular device, not a piece of
39 * data.
41 * This is a rather poor data structure and algorithm, but we don't expect more
42 * than a few faults at any one time, so it should be sufficient for our needs.
45 #include <sys/arc.h>
46 #include <sys/zio.h>
47 #include <sys/zfs_ioctl.h>
48 #include <sys/vdev_impl.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/dsl_dataset.h>
51 #include <sys/fs/zfs.h>
53 uint32_t zio_injection_enabled = 0;
56 * Data describing each zinject handler registered on the system, and
57 * contains the list node linking the handler in the global zinject
58 * handler list.
60 typedef struct inject_handler {
61 int zi_id;
62 spa_t *zi_spa;
63 char *zi_spa_name; /* ZINJECT_DELAY_IMPORT only */
64 zinject_record_t zi_record;
65 uint64_t *zi_lanes;
66 int zi_next_lane;
67 list_node_t zi_link;
68 } inject_handler_t;
71 * List of all zinject handlers registered on the system, protected by
72 * the inject_lock defined below.
74 static list_t inject_handlers;
77 * This protects insertion into, and traversal of, the inject handler
78 * list defined above; as well as the inject_delay_count. Any time a
79 * handler is inserted or removed from the list, this lock should be
80 * taken as a RW_WRITER; and any time traversal is done over the list
81 * (without modification to it) this lock should be taken as a RW_READER.
83 static krwlock_t inject_lock;
86 * This holds the number of zinject delay handlers that have been
87 * registered on the system. It is protected by the inject_lock defined
88 * above. Thus modifications to this count must be a RW_WRITER of the
89 * inject_lock, and reads of this count must be (at least) a RW_READER
90 * of the lock.
92 static int inject_delay_count = 0;
95 * This lock is used only in zio_handle_io_delay(), refer to the comment
96 * in that function for more details.
98 static kmutex_t inject_delay_mtx;
101 * Used to assign unique identifying numbers to each new zinject handler.
103 static int inject_next_id = 1;
106 * Test if the requested frequency was triggered
108 static boolean_t
109 freq_triggered(uint32_t frequency)
112 * zero implies always (100%)
114 if (frequency == 0)
115 return (B_TRUE);
118 * Note: we still handle legacy (unscaled) frequency values
120 uint32_t maximum = (frequency <= 100) ? 100 : ZI_PERCENTAGE_MAX;
122 return (random_in_range(maximum) < frequency);
126 * Returns true if the given record matches the I/O in progress.
128 static boolean_t
129 zio_match_handler(const zbookmark_phys_t *zb, uint64_t type, int dva,
130 zinject_record_t *record, int error)
133 * Check for a match against the MOS, which is based on type
135 if (zb->zb_objset == DMU_META_OBJSET &&
136 record->zi_objset == DMU_META_OBJSET &&
137 record->zi_object == DMU_META_DNODE_OBJECT) {
138 if (record->zi_type == DMU_OT_NONE ||
139 type == record->zi_type)
140 return (freq_triggered(record->zi_freq));
141 else
142 return (B_FALSE);
146 * Check for an exact match.
148 if (zb->zb_objset == record->zi_objset &&
149 zb->zb_object == record->zi_object &&
150 zb->zb_level == record->zi_level &&
151 zb->zb_blkid >= record->zi_start &&
152 zb->zb_blkid <= record->zi_end &&
153 (record->zi_dvas == 0 ||
154 (dva != ZI_NO_DVA && (record->zi_dvas & (1ULL << dva)))) &&
155 error == record->zi_error) {
156 return (freq_triggered(record->zi_freq));
159 return (B_FALSE);
163 * Panic the system when a config change happens in the function
164 * specified by tag.
166 void
167 zio_handle_panic_injection(spa_t *spa, const char *tag, uint64_t type)
169 inject_handler_t *handler;
171 rw_enter(&inject_lock, RW_READER);
173 for (handler = list_head(&inject_handlers); handler != NULL;
174 handler = list_next(&inject_handlers, handler)) {
176 if (spa != handler->zi_spa)
177 continue;
179 if (handler->zi_record.zi_type == type &&
180 strcmp(tag, handler->zi_record.zi_func) == 0)
181 panic("Panic requested in function %s\n", tag);
184 rw_exit(&inject_lock);
188 * Inject a decryption failure. Decryption failures can occur in
189 * both the ARC and the ZIO layers.
192 zio_handle_decrypt_injection(spa_t *spa, const zbookmark_phys_t *zb,
193 uint64_t type, int error)
195 int ret = 0;
196 inject_handler_t *handler;
198 rw_enter(&inject_lock, RW_READER);
200 for (handler = list_head(&inject_handlers); handler != NULL;
201 handler = list_next(&inject_handlers, handler)) {
203 if (spa != handler->zi_spa ||
204 handler->zi_record.zi_cmd != ZINJECT_DECRYPT_FAULT)
205 continue;
207 if (zio_match_handler(zb, type, ZI_NO_DVA,
208 &handler->zi_record, error)) {
209 ret = error;
210 break;
214 rw_exit(&inject_lock);
215 return (ret);
219 * If this is a physical I/O for a vdev child determine which DVA it is
220 * for. We iterate backwards through the DVAs matching on the offset so
221 * that we end up with ZI_NO_DVA (-1) if we don't find a match.
223 static int
224 zio_match_dva(zio_t *zio)
226 int i = ZI_NO_DVA;
228 if (zio->io_bp != NULL && zio->io_vd != NULL &&
229 zio->io_child_type == ZIO_CHILD_VDEV) {
230 for (i = BP_GET_NDVAS(zio->io_bp) - 1; i >= 0; i--) {
231 dva_t *dva = &zio->io_bp->blk_dva[i];
232 uint64_t off = DVA_GET_OFFSET(dva);
233 vdev_t *vd = vdev_lookup_top(zio->io_spa,
234 DVA_GET_VDEV(dva));
236 /* Compensate for vdev label added to leaves */
237 if (zio->io_vd->vdev_ops->vdev_op_leaf)
238 off += VDEV_LABEL_START_SIZE;
240 if (zio->io_vd == vd && zio->io_offset == off)
241 break;
245 return (i);
250 * Determine if the I/O in question should return failure. Returns the errno
251 * to be returned to the caller.
254 zio_handle_fault_injection(zio_t *zio, int error)
256 int ret = 0;
257 inject_handler_t *handler;
260 * Ignore I/O not associated with any logical data.
262 if (zio->io_logical == NULL)
263 return (0);
266 * Currently, we only support fault injection on reads.
268 if (zio->io_type != ZIO_TYPE_READ)
269 return (0);
272 * A rebuild I/O has no checksum to verify.
274 if (zio->io_priority == ZIO_PRIORITY_REBUILD && error == ECKSUM)
275 return (0);
277 rw_enter(&inject_lock, RW_READER);
279 for (handler = list_head(&inject_handlers); handler != NULL;
280 handler = list_next(&inject_handlers, handler)) {
281 if (zio->io_spa != handler->zi_spa ||
282 handler->zi_record.zi_cmd != ZINJECT_DATA_FAULT)
283 continue;
285 /* If this handler matches, return the specified error */
286 if (zio_match_handler(&zio->io_logical->io_bookmark,
287 zio->io_bp ? BP_GET_TYPE(zio->io_bp) : DMU_OT_NONE,
288 zio_match_dva(zio), &handler->zi_record, error)) {
289 ret = error;
290 break;
294 rw_exit(&inject_lock);
296 return (ret);
300 * Determine if the zio is part of a label update and has an injection
301 * handler associated with that portion of the label. Currently, we
302 * allow error injection in either the nvlist or the uberblock region of
303 * of the vdev label.
306 zio_handle_label_injection(zio_t *zio, int error)
308 inject_handler_t *handler;
309 vdev_t *vd = zio->io_vd;
310 uint64_t offset = zio->io_offset;
311 int label;
312 int ret = 0;
314 if (offset >= VDEV_LABEL_START_SIZE &&
315 offset < vd->vdev_psize - VDEV_LABEL_END_SIZE)
316 return (0);
318 rw_enter(&inject_lock, RW_READER);
320 for (handler = list_head(&inject_handlers); handler != NULL;
321 handler = list_next(&inject_handlers, handler)) {
322 uint64_t start = handler->zi_record.zi_start;
323 uint64_t end = handler->zi_record.zi_end;
325 if (handler->zi_record.zi_cmd != ZINJECT_LABEL_FAULT)
326 continue;
329 * The injection region is the relative offsets within a
330 * vdev label. We must determine the label which is being
331 * updated and adjust our region accordingly.
333 label = vdev_label_number(vd->vdev_psize, offset);
334 start = vdev_label_offset(vd->vdev_psize, label, start);
335 end = vdev_label_offset(vd->vdev_psize, label, end);
337 if (zio->io_vd->vdev_guid == handler->zi_record.zi_guid &&
338 (offset >= start && offset <= end)) {
339 ret = error;
340 break;
343 rw_exit(&inject_lock);
344 return (ret);
347 static int
348 zio_inject_bitflip_cb(void *data, size_t len, void *private)
350 zio_t *zio = private;
351 uint8_t *buffer = data;
352 uint_t byte = random_in_range(len);
354 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
356 /* flip a single random bit in an abd data buffer */
357 buffer[byte] ^= 1 << random_in_range(8);
359 return (1); /* stop after first flip */
362 static int
363 zio_handle_device_injection_impl(vdev_t *vd, zio_t *zio, int err1, int err2)
365 inject_handler_t *handler;
366 int ret = 0;
369 * We skip over faults in the labels unless it's during device open
370 * (i.e. zio == NULL) or a device flush (offset is meaningless)
372 if (zio != NULL && zio->io_type != ZIO_TYPE_FLUSH) {
373 uint64_t offset = zio->io_offset;
375 if (offset < VDEV_LABEL_START_SIZE ||
376 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE)
377 return (0);
380 rw_enter(&inject_lock, RW_READER);
382 for (handler = list_head(&inject_handlers); handler != NULL;
383 handler = list_next(&inject_handlers, handler)) {
385 if (handler->zi_record.zi_cmd != ZINJECT_DEVICE_FAULT)
386 continue;
388 if (vd->vdev_guid == handler->zi_record.zi_guid) {
389 if (handler->zi_record.zi_failfast &&
390 (zio == NULL || (zio->io_flags &
391 (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))) {
392 continue;
395 /* Handle type specific I/O failures */
396 if (zio != NULL &&
397 handler->zi_record.zi_iotype != ZIO_TYPES &&
398 handler->zi_record.zi_iotype != zio->io_type)
399 continue;
401 if (handler->zi_record.zi_error == err1 ||
402 handler->zi_record.zi_error == err2) {
404 * limit error injection if requested
406 if (!freq_triggered(handler->zi_record.zi_freq))
407 continue;
410 * For a failed open, pretend like the device
411 * has gone away.
413 if (err1 == ENXIO)
414 vd->vdev_stat.vs_aux =
415 VDEV_AUX_OPEN_FAILED;
418 * Treat these errors as if they had been
419 * retried so that all the appropriate stats
420 * and FMA events are generated.
422 if (!handler->zi_record.zi_failfast &&
423 zio != NULL)
424 zio->io_flags |= ZIO_FLAG_IO_RETRY;
427 * EILSEQ means flip a bit after a read
429 if (handler->zi_record.zi_error == EILSEQ) {
430 if (zio == NULL)
431 break;
433 /* locate buffer data and flip a bit */
434 (void) abd_iterate_func(zio->io_abd, 0,
435 zio->io_size, zio_inject_bitflip_cb,
436 zio);
437 break;
440 ret = handler->zi_record.zi_error;
441 break;
443 if (handler->zi_record.zi_error == ENXIO) {
444 ret = SET_ERROR(EIO);
445 break;
450 rw_exit(&inject_lock);
452 return (ret);
456 zio_handle_device_injection(vdev_t *vd, zio_t *zio, int error)
458 return (zio_handle_device_injection_impl(vd, zio, error, INT_MAX));
462 zio_handle_device_injections(vdev_t *vd, zio_t *zio, int err1, int err2)
464 return (zio_handle_device_injection_impl(vd, zio, err1, err2));
468 * Simulate hardware that ignores cache flushes. For requested number
469 * of seconds nix the actual writing to disk.
471 void
472 zio_handle_ignored_writes(zio_t *zio)
474 inject_handler_t *handler;
476 rw_enter(&inject_lock, RW_READER);
478 for (handler = list_head(&inject_handlers); handler != NULL;
479 handler = list_next(&inject_handlers, handler)) {
481 /* Ignore errors not destined for this pool */
482 if (zio->io_spa != handler->zi_spa ||
483 handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
484 continue;
487 * Positive duration implies # of seconds, negative
488 * a number of txgs
490 if (handler->zi_record.zi_timer == 0) {
491 if (handler->zi_record.zi_duration > 0)
492 handler->zi_record.zi_timer = ddi_get_lbolt64();
493 else
494 handler->zi_record.zi_timer = zio->io_txg;
497 /* Have a "problem" writing 60% of the time */
498 if (random_in_range(100) < 60)
499 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
500 break;
503 rw_exit(&inject_lock);
506 void
507 spa_handle_ignored_writes(spa_t *spa)
509 inject_handler_t *handler;
511 if (zio_injection_enabled == 0)
512 return;
514 rw_enter(&inject_lock, RW_READER);
516 for (handler = list_head(&inject_handlers); handler != NULL;
517 handler = list_next(&inject_handlers, handler)) {
519 if (spa != handler->zi_spa ||
520 handler->zi_record.zi_cmd != ZINJECT_IGNORED_WRITES)
521 continue;
523 if (handler->zi_record.zi_duration > 0) {
524 VERIFY(handler->zi_record.zi_timer == 0 ||
525 ddi_time_after64(
526 (int64_t)handler->zi_record.zi_timer +
527 handler->zi_record.zi_duration * hz,
528 ddi_get_lbolt64()));
529 } else {
530 /* duration is negative so the subtraction here adds */
531 VERIFY(handler->zi_record.zi_timer == 0 ||
532 handler->zi_record.zi_timer -
533 handler->zi_record.zi_duration >=
534 spa_syncing_txg(spa));
538 rw_exit(&inject_lock);
541 hrtime_t
542 zio_handle_io_delay(zio_t *zio)
544 vdev_t *vd = zio->io_vd;
545 inject_handler_t *min_handler = NULL;
546 hrtime_t min_target = 0;
548 rw_enter(&inject_lock, RW_READER);
551 * inject_delay_count is a subset of zio_injection_enabled that
552 * is only incremented for delay handlers. These checks are
553 * mainly added to remind the reader why we're not explicitly
554 * checking zio_injection_enabled like the other functions.
556 IMPLY(inject_delay_count > 0, zio_injection_enabled > 0);
557 IMPLY(zio_injection_enabled == 0, inject_delay_count == 0);
560 * If there aren't any inject delay handlers registered, then we
561 * can short circuit and simply return 0 here. A value of zero
562 * informs zio_delay_interrupt() that this request should not be
563 * delayed. This short circuit keeps us from acquiring the
564 * inject_delay_mutex unnecessarily.
566 if (inject_delay_count == 0) {
567 rw_exit(&inject_lock);
568 return (0);
572 * Each inject handler has a number of "lanes" associated with
573 * it. Each lane is able to handle requests independently of one
574 * another, and at a latency defined by the inject handler
575 * record's zi_timer field. Thus if a handler in configured with
576 * a single lane with a 10ms latency, it will delay requests
577 * such that only a single request is completed every 10ms. So,
578 * if more than one request is attempted per each 10ms interval,
579 * the average latency of the requests will be greater than
580 * 10ms; but if only a single request is submitted each 10ms
581 * interval the average latency will be 10ms.
583 * We need to acquire this mutex to prevent multiple concurrent
584 * threads being assigned to the same lane of a given inject
585 * handler. The mutex allows us to perform the following two
586 * operations atomically:
588 * 1. determine the minimum handler and minimum target
589 * value of all the possible handlers
590 * 2. update that minimum handler's lane array
592 * Without atomicity, two (or more) threads could pick the same
593 * lane in step (1), and then conflict with each other in step
594 * (2). This could allow a single lane handler to process
595 * multiple requests simultaneously, which shouldn't be possible.
597 mutex_enter(&inject_delay_mtx);
599 for (inject_handler_t *handler = list_head(&inject_handlers);
600 handler != NULL; handler = list_next(&inject_handlers, handler)) {
601 if (handler->zi_record.zi_cmd != ZINJECT_DELAY_IO)
602 continue;
604 if (!freq_triggered(handler->zi_record.zi_freq))
605 continue;
607 if (vd->vdev_guid != handler->zi_record.zi_guid)
608 continue;
610 /* also match on I/O type (e.g., -T read) */
611 if (handler->zi_record.zi_iotype != ZIO_TYPES &&
612 handler->zi_record.zi_iotype != zio->io_type) {
613 continue;
617 * Defensive; should never happen as the array allocation
618 * occurs prior to inserting this handler on the list.
620 ASSERT3P(handler->zi_lanes, !=, NULL);
623 * This should never happen, the zinject command should
624 * prevent a user from setting an IO delay with zero lanes.
626 ASSERT3U(handler->zi_record.zi_nlanes, !=, 0);
628 ASSERT3U(handler->zi_record.zi_nlanes, >,
629 handler->zi_next_lane);
632 * We want to issue this IO to the lane that will become
633 * idle the soonest, so we compare the soonest this
634 * specific handler can complete the IO with all other
635 * handlers, to find the lowest value of all possible
636 * lanes. We then use this lane to submit the request.
638 * Since each handler has a constant value for its
639 * delay, we can just use the "next" lane for that
640 * handler; as it will always be the lane with the
641 * lowest value for that particular handler (i.e. the
642 * lane that will become idle the soonest). This saves a
643 * scan of each handler's lanes array.
645 * There's two cases to consider when determining when
646 * this specific IO request should complete. If this
647 * lane is idle, we want to "submit" the request now so
648 * it will complete after zi_timer milliseconds. Thus,
649 * we set the target to now + zi_timer.
651 * If the lane is busy, we want this request to complete
652 * zi_timer milliseconds after the lane becomes idle.
653 * Since the 'zi_lanes' array holds the time at which
654 * each lane will become idle, we use that value to
655 * determine when this request should complete.
657 hrtime_t idle = handler->zi_record.zi_timer + gethrtime();
658 hrtime_t busy = handler->zi_record.zi_timer +
659 handler->zi_lanes[handler->zi_next_lane];
660 hrtime_t target = MAX(idle, busy);
662 if (min_handler == NULL) {
663 min_handler = handler;
664 min_target = target;
665 continue;
668 ASSERT3P(min_handler, !=, NULL);
669 ASSERT3U(min_target, !=, 0);
672 * We don't yet increment the "next lane" variable since
673 * we still might find a lower value lane in another
674 * handler during any remaining iterations. Once we're
675 * sure we've selected the absolute minimum, we'll claim
676 * the lane and increment the handler's "next lane"
677 * field below.
680 if (target < min_target) {
681 min_handler = handler;
682 min_target = target;
687 * 'min_handler' will be NULL if no IO delays are registered for
688 * this vdev, otherwise it will point to the handler containing
689 * the lane that will become idle the soonest.
691 if (min_handler != NULL) {
692 ASSERT3U(min_target, !=, 0);
693 min_handler->zi_lanes[min_handler->zi_next_lane] = min_target;
696 * If we've used all possible lanes for this handler,
697 * loop back and start using the first lane again;
698 * otherwise, just increment the lane index.
700 min_handler->zi_next_lane = (min_handler->zi_next_lane + 1) %
701 min_handler->zi_record.zi_nlanes;
704 mutex_exit(&inject_delay_mtx);
705 rw_exit(&inject_lock);
707 return (min_target);
710 static void
711 zio_handle_pool_delay(spa_t *spa, hrtime_t elapsed, zinject_type_t command)
713 inject_handler_t *handler;
714 hrtime_t delay = 0;
715 int id = 0;
717 rw_enter(&inject_lock, RW_READER);
719 for (handler = list_head(&inject_handlers);
720 handler != NULL && handler->zi_record.zi_cmd == command;
721 handler = list_next(&inject_handlers, handler)) {
722 ASSERT3P(handler->zi_spa_name, !=, NULL);
723 if (strcmp(spa_name(spa), handler->zi_spa_name) == 0) {
724 uint64_t pause =
725 SEC2NSEC(handler->zi_record.zi_duration);
726 if (pause > elapsed) {
727 delay = pause - elapsed;
729 id = handler->zi_id;
730 break;
734 rw_exit(&inject_lock);
736 if (delay) {
737 if (command == ZINJECT_DELAY_IMPORT) {
738 spa_import_progress_set_notes(spa, "injecting %llu "
739 "sec delay", (u_longlong_t)NSEC2SEC(delay));
741 zfs_sleep_until(gethrtime() + delay);
743 if (id) {
744 /* all done with this one-shot handler */
745 zio_clear_fault(id);
750 * For testing, inject a delay during an import
752 void
753 zio_handle_import_delay(spa_t *spa, hrtime_t elapsed)
755 zio_handle_pool_delay(spa, elapsed, ZINJECT_DELAY_IMPORT);
759 * For testing, inject a delay during an export
761 void
762 zio_handle_export_delay(spa_t *spa, hrtime_t elapsed)
764 zio_handle_pool_delay(spa, elapsed, ZINJECT_DELAY_EXPORT);
767 static int
768 zio_calculate_range(const char *pool, zinject_record_t *record)
770 dsl_pool_t *dp;
771 dsl_dataset_t *ds;
772 objset_t *os = NULL;
773 dnode_t *dn = NULL;
774 int error;
777 * Obtain the dnode for object using pool, objset, and object
779 error = dsl_pool_hold(pool, FTAG, &dp);
780 if (error)
781 return (error);
783 error = dsl_dataset_hold_obj(dp, record->zi_objset, FTAG, &ds);
784 dsl_pool_rele(dp, FTAG);
785 if (error)
786 return (error);
788 error = dmu_objset_from_ds(ds, &os);
789 dsl_dataset_rele(ds, FTAG);
790 if (error)
791 return (error);
793 error = dnode_hold(os, record->zi_object, FTAG, &dn);
794 if (error)
795 return (error);
798 * Translate the range into block IDs
800 if (record->zi_start != 0 || record->zi_end != -1ULL) {
801 record->zi_start >>= dn->dn_datablkshift;
802 record->zi_end >>= dn->dn_datablkshift;
804 if (record->zi_level > 0) {
805 if (record->zi_level >= dn->dn_nlevels) {
806 dnode_rele(dn, FTAG);
807 return (SET_ERROR(EDOM));
810 if (record->zi_start != 0 || record->zi_end != 0) {
811 int shift = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
813 for (int level = record->zi_level; level > 0; level--) {
814 record->zi_start >>= shift;
815 record->zi_end >>= shift;
820 dnode_rele(dn, FTAG);
821 return (0);
824 static boolean_t
825 zio_pool_handler_exists(const char *name, zinject_type_t command)
827 boolean_t exists = B_FALSE;
829 rw_enter(&inject_lock, RW_READER);
830 for (inject_handler_t *handler = list_head(&inject_handlers);
831 handler != NULL; handler = list_next(&inject_handlers, handler)) {
832 if (command != handler->zi_record.zi_cmd)
833 continue;
835 const char *pool = (handler->zi_spa_name != NULL) ?
836 handler->zi_spa_name : spa_name(handler->zi_spa);
837 if (strcmp(name, pool) == 0) {
838 exists = B_TRUE;
839 break;
842 rw_exit(&inject_lock);
844 return (exists);
847 * Create a new handler for the given record. We add it to the list, adding
848 * a reference to the spa_t in the process. We increment zio_injection_enabled,
849 * which is the switch to trigger all fault injection.
852 zio_inject_fault(char *name, int flags, int *id, zinject_record_t *record)
854 inject_handler_t *handler;
855 int error;
856 spa_t *spa;
859 * If this is pool-wide metadata, make sure we unload the corresponding
860 * spa_t, so that the next attempt to load it will trigger the fault.
861 * We call spa_reset() to unload the pool appropriately.
863 if (flags & ZINJECT_UNLOAD_SPA)
864 if ((error = spa_reset(name)) != 0)
865 return (error);
867 if (record->zi_cmd == ZINJECT_DELAY_IO) {
869 * A value of zero for the number of lanes or for the
870 * delay time doesn't make sense.
872 if (record->zi_timer == 0 || record->zi_nlanes == 0)
873 return (SET_ERROR(EINVAL));
876 * The number of lanes is directly mapped to the size of
877 * an array used by the handler. Thus, to ensure the
878 * user doesn't trigger an allocation that's "too large"
879 * we cap the number of lanes here.
881 if (record->zi_nlanes >= UINT16_MAX)
882 return (SET_ERROR(EINVAL));
886 * If the supplied range was in bytes -- calculate the actual blkid
888 if (flags & ZINJECT_CALC_RANGE) {
889 error = zio_calculate_range(name, record);
890 if (error != 0)
891 return (error);
894 if (!(flags & ZINJECT_NULL)) {
896 * Pool delays for import or export don't take an
897 * injection reference on the spa. Instead they
898 * rely on matching by name.
900 if (record->zi_cmd == ZINJECT_DELAY_IMPORT ||
901 record->zi_cmd == ZINJECT_DELAY_EXPORT) {
902 if (record->zi_duration <= 0)
903 return (SET_ERROR(EINVAL));
905 * Only one import | export delay handler per pool.
907 if (zio_pool_handler_exists(name, record->zi_cmd))
908 return (SET_ERROR(EEXIST));
910 mutex_enter(&spa_namespace_lock);
911 boolean_t has_spa = spa_lookup(name) != NULL;
912 mutex_exit(&spa_namespace_lock);
914 if (record->zi_cmd == ZINJECT_DELAY_IMPORT && has_spa)
915 return (SET_ERROR(EEXIST));
916 if (record->zi_cmd == ZINJECT_DELAY_EXPORT && !has_spa)
917 return (SET_ERROR(ENOENT));
918 spa = NULL;
919 } else {
921 * spa_inject_ref() will add an injection reference,
922 * which will prevent the pool from being removed
923 * from the namespace while still allowing it to be
924 * unloaded.
926 if ((spa = spa_inject_addref(name)) == NULL)
927 return (SET_ERROR(ENOENT));
930 handler = kmem_alloc(sizeof (inject_handler_t), KM_SLEEP);
931 handler->zi_spa = spa; /* note: can be NULL */
932 handler->zi_record = *record;
934 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
935 handler->zi_lanes = kmem_zalloc(
936 sizeof (*handler->zi_lanes) *
937 handler->zi_record.zi_nlanes, KM_SLEEP);
938 handler->zi_next_lane = 0;
939 } else {
940 handler->zi_lanes = NULL;
941 handler->zi_next_lane = 0;
944 if (handler->zi_spa == NULL)
945 handler->zi_spa_name = spa_strdup(name);
946 else
947 handler->zi_spa_name = NULL;
949 rw_enter(&inject_lock, RW_WRITER);
952 * We can't move this increment into the conditional
953 * above because we need to hold the RW_WRITER lock of
954 * inject_lock, and we don't want to hold that while
955 * allocating the handler's zi_lanes array.
957 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
958 ASSERT3S(inject_delay_count, >=, 0);
959 inject_delay_count++;
960 ASSERT3S(inject_delay_count, >, 0);
963 *id = handler->zi_id = inject_next_id++;
964 list_insert_tail(&inject_handlers, handler);
965 atomic_inc_32(&zio_injection_enabled);
967 rw_exit(&inject_lock);
971 * Flush the ARC, so that any attempts to read this data will end up
972 * going to the ZIO layer. Note that this is a little overkill, but
973 * we don't have the necessary ARC interfaces to do anything else, and
974 * fault injection isn't a performance critical path.
976 if (flags & ZINJECT_FLUSH_ARC)
978 * We must use FALSE to ensure arc_flush returns, since
979 * we're not preventing concurrent ARC insertions.
981 arc_flush(NULL, FALSE);
983 return (0);
987 * Returns the next record with an ID greater than that supplied to the
988 * function. Used to iterate over all handlers in the system.
991 zio_inject_list_next(int *id, char *name, size_t buflen,
992 zinject_record_t *record)
994 inject_handler_t *handler;
995 int ret;
997 mutex_enter(&spa_namespace_lock);
998 rw_enter(&inject_lock, RW_READER);
1000 for (handler = list_head(&inject_handlers); handler != NULL;
1001 handler = list_next(&inject_handlers, handler))
1002 if (handler->zi_id > *id)
1003 break;
1005 if (handler) {
1006 *record = handler->zi_record;
1007 *id = handler->zi_id;
1008 ASSERT(handler->zi_spa || handler->zi_spa_name);
1009 if (handler->zi_spa != NULL)
1010 (void) strlcpy(name, spa_name(handler->zi_spa), buflen);
1011 else
1012 (void) strlcpy(name, handler->zi_spa_name, buflen);
1013 ret = 0;
1014 } else {
1015 ret = SET_ERROR(ENOENT);
1018 rw_exit(&inject_lock);
1019 mutex_exit(&spa_namespace_lock);
1021 return (ret);
1025 * Clear the fault handler with the given identifier, or return ENOENT if none
1026 * exists.
1029 zio_clear_fault(int id)
1031 inject_handler_t *handler;
1033 rw_enter(&inject_lock, RW_WRITER);
1035 for (handler = list_head(&inject_handlers); handler != NULL;
1036 handler = list_next(&inject_handlers, handler))
1037 if (handler->zi_id == id)
1038 break;
1040 if (handler == NULL) {
1041 rw_exit(&inject_lock);
1042 return (SET_ERROR(ENOENT));
1045 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
1046 ASSERT3S(inject_delay_count, >, 0);
1047 inject_delay_count--;
1048 ASSERT3S(inject_delay_count, >=, 0);
1051 list_remove(&inject_handlers, handler);
1052 rw_exit(&inject_lock);
1054 if (handler->zi_record.zi_cmd == ZINJECT_DELAY_IO) {
1055 ASSERT3P(handler->zi_lanes, !=, NULL);
1056 kmem_free(handler->zi_lanes, sizeof (*handler->zi_lanes) *
1057 handler->zi_record.zi_nlanes);
1058 } else {
1059 ASSERT3P(handler->zi_lanes, ==, NULL);
1062 if (handler->zi_spa_name != NULL)
1063 spa_strfree(handler->zi_spa_name);
1065 if (handler->zi_spa != NULL)
1066 spa_inject_delref(handler->zi_spa);
1067 kmem_free(handler, sizeof (inject_handler_t));
1068 atomic_dec_32(&zio_injection_enabled);
1070 return (0);
1073 void
1074 zio_inject_init(void)
1076 rw_init(&inject_lock, NULL, RW_DEFAULT, NULL);
1077 mutex_init(&inject_delay_mtx, NULL, MUTEX_DEFAULT, NULL);
1078 list_create(&inject_handlers, sizeof (inject_handler_t),
1079 offsetof(inject_handler_t, zi_link));
1082 void
1083 zio_inject_fini(void)
1085 list_destroy(&inject_handlers);
1086 mutex_destroy(&inject_delay_mtx);
1087 rw_destroy(&inject_lock);
1090 #if defined(_KERNEL)
1091 EXPORT_SYMBOL(zio_injection_enabled);
1092 EXPORT_SYMBOL(zio_inject_fault);
1093 EXPORT_SYMBOL(zio_inject_list_next);
1094 EXPORT_SYMBOL(zio_clear_fault);
1095 EXPORT_SYMBOL(zio_handle_fault_injection);
1096 EXPORT_SYMBOL(zio_handle_device_injection);
1097 EXPORT_SYMBOL(zio_handle_label_injection);
1098 #endif