2 * Remote Processor Framework
4 * Copyright (C) 2011 Texas Instruments, Inc.
5 * Copyright (C) 2011 Google, Inc.
7 * Ohad Ben-Cohen <ohad@wizery.com>
8 * Brian Swetland <swetland@google.com>
9 * Mark Grosen <mgrosen@ti.com>
10 * Fernando Guzman Lugo <fernando.lugo@ti.com>
11 * Suman Anna <s-anna@ti.com>
12 * Robert Tivy <rtivy@ti.com>
13 * Armando Uribe De Leon <x0095078@ti.com>
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * version 2 as published by the Free Software Foundation.
19 * This program is distributed in the hope that it will be useful,
20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 * GNU General Public License for more details.
25 #define pr_fmt(fmt) "%s: " fmt, __func__
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/device.h>
30 #include <linux/slab.h>
31 #include <linux/mutex.h>
32 #include <linux/dma-mapping.h>
33 #include <linux/firmware.h>
34 #include <linux/string.h>
35 #include <linux/debugfs.h>
36 #include <linux/devcoredump.h>
37 #include <linux/remoteproc.h>
38 #include <linux/iommu.h>
39 #include <linux/idr.h>
40 #include <linux/elf.h>
41 #include <linux/crc32.h>
42 #include <linux/of_reserved_mem.h>
43 #include <linux/virtio_ids.h>
44 #include <linux/virtio_ring.h>
45 #include <asm/byteorder.h>
46 #include <linux/platform_device.h>
48 #include "remoteproc_internal.h"
50 #define HIGH_BITS_MASK 0xFFFFFFFF00000000ULL
52 static DEFINE_MUTEX(rproc_list_mutex
);
53 static LIST_HEAD(rproc_list
);
55 typedef int (*rproc_handle_resources_t
)(struct rproc
*rproc
,
56 struct resource_table
*table
, int len
);
57 typedef int (*rproc_handle_resource_t
)(struct rproc
*rproc
,
58 void *, int offset
, int avail
);
60 static int rproc_alloc_carveout(struct rproc
*rproc
,
61 struct rproc_mem_entry
*mem
);
62 static int rproc_release_carveout(struct rproc
*rproc
,
63 struct rproc_mem_entry
*mem
);
65 /* Unique indices for remoteproc devices */
66 static DEFINE_IDA(rproc_dev_index
);
68 static const char * const rproc_crash_names
[] = {
69 [RPROC_MMUFAULT
] = "mmufault",
70 [RPROC_WATCHDOG
] = "watchdog",
71 [RPROC_FATAL_ERROR
] = "fatal error",
74 /* translate rproc_crash_type to string */
75 static const char *rproc_crash_to_string(enum rproc_crash_type type
)
77 if (type
< ARRAY_SIZE(rproc_crash_names
))
78 return rproc_crash_names
[type
];
83 * This is the IOMMU fault handler we register with the IOMMU API
84 * (when relevant; not all remote processors access memory through
87 * IOMMU core will invoke this handler whenever the remote processor
88 * will try to access an unmapped device address.
90 static int rproc_iommu_fault(struct iommu_domain
*domain
, struct device
*dev
,
91 unsigned long iova
, int flags
, void *token
)
93 struct rproc
*rproc
= token
;
95 dev_err(dev
, "iommu fault: da 0x%lx flags 0x%x\n", iova
, flags
);
97 rproc_report_crash(rproc
, RPROC_MMUFAULT
);
100 * Let the iommu core know we're not really handling this fault;
101 * we just used it as a recovery trigger.
106 static int rproc_enable_iommu(struct rproc
*rproc
)
108 struct iommu_domain
*domain
;
109 struct device
*dev
= rproc
->dev
.parent
;
112 if (!rproc
->has_iommu
) {
113 dev_dbg(dev
, "iommu not present\n");
117 domain
= iommu_domain_alloc(dev
->bus
);
119 dev_err(dev
, "can't alloc iommu domain\n");
123 iommu_set_fault_handler(domain
, rproc_iommu_fault
, rproc
);
125 ret
= iommu_attach_device(domain
, dev
);
127 dev_err(dev
, "can't attach iommu device: %d\n", ret
);
131 rproc
->domain
= domain
;
136 iommu_domain_free(domain
);
140 static void rproc_disable_iommu(struct rproc
*rproc
)
142 struct iommu_domain
*domain
= rproc
->domain
;
143 struct device
*dev
= rproc
->dev
.parent
;
148 iommu_detach_device(domain
, dev
);
149 iommu_domain_free(domain
);
152 phys_addr_t
rproc_va_to_pa(void *cpu_addr
)
155 * Return physical address according to virtual address location
156 * - in vmalloc: if region ioremapped or defined as dma_alloc_coherent
157 * - in kernel: if region allocated in generic dma memory pool
159 if (is_vmalloc_addr(cpu_addr
)) {
160 return page_to_phys(vmalloc_to_page(cpu_addr
)) +
161 offset_in_page(cpu_addr
);
164 WARN_ON(!virt_addr_valid(cpu_addr
));
165 return virt_to_phys(cpu_addr
);
167 EXPORT_SYMBOL(rproc_va_to_pa
);
170 * rproc_da_to_va() - lookup the kernel virtual address for a remoteproc address
171 * @rproc: handle of a remote processor
172 * @da: remoteproc device address to translate
173 * @len: length of the memory region @da is pointing to
175 * Some remote processors will ask us to allocate them physically contiguous
176 * memory regions (which we call "carveouts"), and map them to specific
177 * device addresses (which are hardcoded in the firmware). They may also have
178 * dedicated memory regions internal to the processors, and use them either
179 * exclusively or alongside carveouts.
181 * They may then ask us to copy objects into specific device addresses (e.g.
182 * code/data sections) or expose us certain symbols in other device address
183 * (e.g. their trace buffer).
185 * This function is a helper function with which we can go over the allocated
186 * carveouts and translate specific device addresses to kernel virtual addresses
187 * so we can access the referenced memory. This function also allows to perform
188 * translations on the internal remoteproc memory regions through a platform
189 * implementation specific da_to_va ops, if present.
191 * The function returns a valid kernel address on success or NULL on failure.
193 * Note: phys_to_virt(iommu_iova_to_phys(rproc->domain, da)) will work too,
194 * but only on kernel direct mapped RAM memory. Instead, we're just using
195 * here the output of the DMA API for the carveouts, which should be more
198 void *rproc_da_to_va(struct rproc
*rproc
, u64 da
, int len
)
200 struct rproc_mem_entry
*carveout
;
203 if (rproc
->ops
->da_to_va
) {
204 ptr
= rproc
->ops
->da_to_va(rproc
, da
, len
);
209 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
210 int offset
= da
- carveout
->da
;
212 /* Verify that carveout is allocated */
216 /* try next carveout if da is too small */
220 /* try next carveout if da is too large */
221 if (offset
+ len
> carveout
->len
)
224 ptr
= carveout
->va
+ offset
;
232 EXPORT_SYMBOL(rproc_da_to_va
);
235 * rproc_find_carveout_by_name() - lookup the carveout region by a name
236 * @rproc: handle of a remote processor
237 * @name,..: carveout name to find (standard printf format)
239 * Platform driver has the capability to register some pre-allacoted carveout
240 * (physically contiguous memory regions) before rproc firmware loading and
241 * associated resource table analysis. These regions may be dedicated memory
242 * regions internal to the coprocessor or specified DDR region with specific
245 * This function is a helper function with which we can go over the
246 * allocated carveouts and return associated region characteristics like
247 * coprocessor address, length or processor virtual address.
249 * Return: a valid pointer on carveout entry on success or NULL on failure.
251 struct rproc_mem_entry
*
252 rproc_find_carveout_by_name(struct rproc
*rproc
, const char *name
, ...)
256 struct rproc_mem_entry
*carveout
, *mem
= NULL
;
261 va_start(args
, name
);
262 vsnprintf(_name
, sizeof(_name
), name
, args
);
265 list_for_each_entry(carveout
, &rproc
->carveouts
, node
) {
266 /* Compare carveout and requested names */
267 if (!strcmp(carveout
->name
, _name
)) {
277 * rproc_check_carveout_da() - Check specified carveout da configuration
278 * @rproc: handle of a remote processor
279 * @mem: pointer on carveout to check
280 * @da: area device address
281 * @len: associated area size
283 * This function is a helper function to verify requested device area (couple
284 * da, len) is part of specified carveout.
285 * If da is not set (defined as FW_RSC_ADDR_ANY), only requested length is
288 * Return: 0 if carveout matches request else error
290 static int rproc_check_carveout_da(struct rproc
*rproc
,
291 struct rproc_mem_entry
*mem
, u32 da
, u32 len
)
293 struct device
*dev
= &rproc
->dev
;
296 /* Check requested resource length */
297 if (len
> mem
->len
) {
298 dev_err(dev
, "Registered carveout doesn't fit len request\n");
302 if (da
!= FW_RSC_ADDR_ANY
&& mem
->da
== FW_RSC_ADDR_ANY
) {
303 /* Address doesn't match registered carveout configuration */
305 } else if (da
!= FW_RSC_ADDR_ANY
&& mem
->da
!= FW_RSC_ADDR_ANY
) {
306 delta
= da
- mem
->da
;
308 /* Check requested resource belongs to registered carveout */
311 "Registered carveout doesn't fit da request\n");
315 if (delta
+ len
> mem
->len
) {
317 "Registered carveout doesn't fit len request\n");
325 int rproc_alloc_vring(struct rproc_vdev
*rvdev
, int i
)
327 struct rproc
*rproc
= rvdev
->rproc
;
328 struct device
*dev
= &rproc
->dev
;
329 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
330 struct fw_rsc_vdev
*rsc
;
331 int ret
, size
, notifyid
;
332 struct rproc_mem_entry
*mem
;
334 /* actual size of vring (in bytes) */
335 size
= PAGE_ALIGN(vring_size(rvring
->len
, rvring
->align
));
337 rsc
= (void *)rproc
->table_ptr
+ rvdev
->rsc_offset
;
339 /* Search for pre-registered carveout */
340 mem
= rproc_find_carveout_by_name(rproc
, "vdev%dvring%d", rvdev
->index
,
343 if (rproc_check_carveout_da(rproc
, mem
, rsc
->vring
[i
].da
, size
))
346 /* Register carveout in in list */
347 mem
= rproc_mem_entry_init(dev
, 0, 0, size
, rsc
->vring
[i
].da
,
348 rproc_alloc_carveout
,
349 rproc_release_carveout
,
353 dev_err(dev
, "Can't allocate memory entry structure\n");
357 rproc_add_carveout(rproc
, mem
);
361 * Assign an rproc-wide unique index for this vring
362 * TODO: assign a notifyid for rvdev updates as well
363 * TODO: support predefined notifyids (via resource table)
365 ret
= idr_alloc(&rproc
->notifyids
, rvring
, 0, 0, GFP_KERNEL
);
367 dev_err(dev
, "idr_alloc failed: %d\n", ret
);
372 /* Potentially bump max_notifyid */
373 if (notifyid
> rproc
->max_notifyid
)
374 rproc
->max_notifyid
= notifyid
;
376 rvring
->notifyid
= notifyid
;
378 /* Let the rproc know the notifyid of this vring.*/
379 rsc
->vring
[i
].notifyid
= notifyid
;
384 rproc_parse_vring(struct rproc_vdev
*rvdev
, struct fw_rsc_vdev
*rsc
, int i
)
386 struct rproc
*rproc
= rvdev
->rproc
;
387 struct device
*dev
= &rproc
->dev
;
388 struct fw_rsc_vdev_vring
*vring
= &rsc
->vring
[i
];
389 struct rproc_vring
*rvring
= &rvdev
->vring
[i
];
391 dev_dbg(dev
, "vdev rsc: vring%d: da 0x%x, qsz %d, align %d\n",
392 i
, vring
->da
, vring
->num
, vring
->align
);
394 /* verify queue size and vring alignment are sane */
395 if (!vring
->num
|| !vring
->align
) {
396 dev_err(dev
, "invalid qsz (%d) or alignment (%d)\n",
397 vring
->num
, vring
->align
);
401 rvring
->len
= vring
->num
;
402 rvring
->align
= vring
->align
;
403 rvring
->rvdev
= rvdev
;
408 void rproc_free_vring(struct rproc_vring
*rvring
)
410 struct rproc
*rproc
= rvring
->rvdev
->rproc
;
411 int idx
= rvring
->rvdev
->vring
- rvring
;
412 struct fw_rsc_vdev
*rsc
;
414 idr_remove(&rproc
->notifyids
, rvring
->notifyid
);
416 /* reset resource entry info */
417 rsc
= (void *)rproc
->table_ptr
+ rvring
->rvdev
->rsc_offset
;
418 rsc
->vring
[idx
].da
= 0;
419 rsc
->vring
[idx
].notifyid
= -1;
422 static int rproc_vdev_do_start(struct rproc_subdev
*subdev
)
424 struct rproc_vdev
*rvdev
= container_of(subdev
, struct rproc_vdev
, subdev
);
426 return rproc_add_virtio_dev(rvdev
, rvdev
->id
);
429 static void rproc_vdev_do_stop(struct rproc_subdev
*subdev
, bool crashed
)
431 struct rproc_vdev
*rvdev
= container_of(subdev
, struct rproc_vdev
, subdev
);
434 ret
= device_for_each_child(&rvdev
->dev
, NULL
, rproc_remove_virtio_dev
);
436 dev_warn(&rvdev
->dev
, "can't remove vdev child device: %d\n", ret
);
440 * rproc_rvdev_release() - release the existence of a rvdev
442 * @dev: the subdevice's dev
444 static void rproc_rvdev_release(struct device
*dev
)
446 struct rproc_vdev
*rvdev
= container_of(dev
, struct rproc_vdev
, dev
);
448 of_reserved_mem_device_release(dev
);
454 * rproc_handle_vdev() - handle a vdev fw resource
455 * @rproc: the remote processor
456 * @rsc: the vring resource descriptor
457 * @avail: size of available data (for sanity checking the image)
459 * This resource entry requests the host to statically register a virtio
460 * device (vdev), and setup everything needed to support it. It contains
461 * everything needed to make it possible: the virtio device id, virtio
462 * device features, vrings information, virtio config space, etc...
464 * Before registering the vdev, the vrings are allocated from non-cacheable
465 * physically contiguous memory. Currently we only support two vrings per
466 * remote processor (temporary limitation). We might also want to consider
467 * doing the vring allocation only later when ->find_vqs() is invoked, and
468 * then release them upon ->del_vqs().
470 * Note: @da is currently not really handled correctly: we dynamically
471 * allocate it using the DMA API, ignoring requested hard coded addresses,
472 * and we don't take care of any required IOMMU programming. This is all
473 * going to be taken care of when the generic iommu-based DMA API will be
474 * merged. Meanwhile, statically-addressed iommu-based firmware images should
475 * use RSC_DEVMEM resource entries to map their required @da to the physical
476 * address of their base CMA region (ouch, hacky!).
478 * Returns 0 on success, or an appropriate error code otherwise
480 static int rproc_handle_vdev(struct rproc
*rproc
, struct fw_rsc_vdev
*rsc
,
481 int offset
, int avail
)
483 struct device
*dev
= &rproc
->dev
;
484 struct rproc_vdev
*rvdev
;
488 /* make sure resource isn't truncated */
489 if (sizeof(*rsc
) + rsc
->num_of_vrings
* sizeof(struct fw_rsc_vdev_vring
)
490 + rsc
->config_len
> avail
) {
491 dev_err(dev
, "vdev rsc is truncated\n");
495 /* make sure reserved bytes are zeroes */
496 if (rsc
->reserved
[0] || rsc
->reserved
[1]) {
497 dev_err(dev
, "vdev rsc has non zero reserved bytes\n");
501 dev_dbg(dev
, "vdev rsc: id %d, dfeatures 0x%x, cfg len %d, %d vrings\n",
502 rsc
->id
, rsc
->dfeatures
, rsc
->config_len
, rsc
->num_of_vrings
);
504 /* we currently support only two vrings per rvdev */
505 if (rsc
->num_of_vrings
> ARRAY_SIZE(rvdev
->vring
)) {
506 dev_err(dev
, "too many vrings: %d\n", rsc
->num_of_vrings
);
510 rvdev
= kzalloc(sizeof(*rvdev
), GFP_KERNEL
);
514 kref_init(&rvdev
->refcount
);
517 rvdev
->rproc
= rproc
;
518 rvdev
->index
= rproc
->nb_vdev
++;
520 /* Initialise vdev subdevice */
521 snprintf(name
, sizeof(name
), "vdev%dbuffer", rvdev
->index
);
522 rvdev
->dev
.parent
= rproc
->dev
.parent
;
523 rvdev
->dev
.release
= rproc_rvdev_release
;
524 dev_set_name(&rvdev
->dev
, "%s#%s", dev_name(rvdev
->dev
.parent
), name
);
525 dev_set_drvdata(&rvdev
->dev
, rvdev
);
527 ret
= device_register(&rvdev
->dev
);
529 put_device(&rvdev
->dev
);
532 /* Make device dma capable by inheriting from parent's capabilities */
533 set_dma_ops(&rvdev
->dev
, get_dma_ops(rproc
->dev
.parent
));
535 ret
= dma_coerce_mask_and_coherent(&rvdev
->dev
,
536 dma_get_mask(rproc
->dev
.parent
));
539 "Failed to set DMA mask %llx. Trying to continue... %x\n",
540 dma_get_mask(rproc
->dev
.parent
), ret
);
543 /* parse the vrings */
544 for (i
= 0; i
< rsc
->num_of_vrings
; i
++) {
545 ret
= rproc_parse_vring(rvdev
, rsc
, i
);
550 /* remember the resource offset*/
551 rvdev
->rsc_offset
= offset
;
553 /* allocate the vring resources */
554 for (i
= 0; i
< rsc
->num_of_vrings
; i
++) {
555 ret
= rproc_alloc_vring(rvdev
, i
);
557 goto unwind_vring_allocations
;
560 list_add_tail(&rvdev
->node
, &rproc
->rvdevs
);
562 rvdev
->subdev
.start
= rproc_vdev_do_start
;
563 rvdev
->subdev
.stop
= rproc_vdev_do_stop
;
565 rproc_add_subdev(rproc
, &rvdev
->subdev
);
569 unwind_vring_allocations
:
570 for (i
--; i
>= 0; i
--)
571 rproc_free_vring(&rvdev
->vring
[i
]);
573 device_unregister(&rvdev
->dev
);
577 void rproc_vdev_release(struct kref
*ref
)
579 struct rproc_vdev
*rvdev
= container_of(ref
, struct rproc_vdev
, refcount
);
580 struct rproc_vring
*rvring
;
581 struct rproc
*rproc
= rvdev
->rproc
;
584 for (id
= 0; id
< ARRAY_SIZE(rvdev
->vring
); id
++) {
585 rvring
= &rvdev
->vring
[id
];
586 rproc_free_vring(rvring
);
589 rproc_remove_subdev(rproc
, &rvdev
->subdev
);
590 list_del(&rvdev
->node
);
591 device_unregister(&rvdev
->dev
);
595 * rproc_handle_trace() - handle a shared trace buffer resource
596 * @rproc: the remote processor
597 * @rsc: the trace resource descriptor
598 * @avail: size of available data (for sanity checking the image)
600 * In case the remote processor dumps trace logs into memory,
601 * export it via debugfs.
603 * Currently, the 'da' member of @rsc should contain the device address
604 * where the remote processor is dumping the traces. Later we could also
605 * support dynamically allocating this address using the generic
606 * DMA API (but currently there isn't a use case for that).
608 * Returns 0 on success, or an appropriate error code otherwise
610 static int rproc_handle_trace(struct rproc
*rproc
, struct fw_rsc_trace
*rsc
,
611 int offset
, int avail
)
613 struct rproc_debug_trace
*trace
;
614 struct device
*dev
= &rproc
->dev
;
617 if (sizeof(*rsc
) > avail
) {
618 dev_err(dev
, "trace rsc is truncated\n");
622 /* make sure reserved bytes are zeroes */
624 dev_err(dev
, "trace rsc has non zero reserved bytes\n");
628 trace
= kzalloc(sizeof(*trace
), GFP_KERNEL
);
632 /* set the trace buffer dma properties */
633 trace
->trace_mem
.len
= rsc
->len
;
634 trace
->trace_mem
.da
= rsc
->da
;
636 /* set pointer on rproc device */
637 trace
->rproc
= rproc
;
639 /* make sure snprintf always null terminates, even if truncating */
640 snprintf(name
, sizeof(name
), "trace%d", rproc
->num_traces
);
642 /* create the debugfs entry */
643 trace
->tfile
= rproc_create_trace_file(name
, rproc
, trace
);
649 list_add_tail(&trace
->node
, &rproc
->traces
);
653 dev_dbg(dev
, "%s added: da 0x%x, len 0x%x\n",
654 name
, rsc
->da
, rsc
->len
);
660 * rproc_handle_devmem() - handle devmem resource entry
661 * @rproc: remote processor handle
662 * @rsc: the devmem resource entry
663 * @avail: size of available data (for sanity checking the image)
665 * Remote processors commonly need to access certain on-chip peripherals.
667 * Some of these remote processors access memory via an iommu device,
668 * and might require us to configure their iommu before they can access
669 * the on-chip peripherals they need.
671 * This resource entry is a request to map such a peripheral device.
673 * These devmem entries will contain the physical address of the device in
674 * the 'pa' member. If a specific device address is expected, then 'da' will
675 * contain it (currently this is the only use case supported). 'len' will
676 * contain the size of the physical region we need to map.
678 * Currently we just "trust" those devmem entries to contain valid physical
679 * addresses, but this is going to change: we want the implementations to
680 * tell us ranges of physical addresses the firmware is allowed to request,
681 * and not allow firmwares to request access to physical addresses that
682 * are outside those ranges.
684 static int rproc_handle_devmem(struct rproc
*rproc
, struct fw_rsc_devmem
*rsc
,
685 int offset
, int avail
)
687 struct rproc_mem_entry
*mapping
;
688 struct device
*dev
= &rproc
->dev
;
691 /* no point in handling this resource without a valid iommu domain */
695 if (sizeof(*rsc
) > avail
) {
696 dev_err(dev
, "devmem rsc is truncated\n");
700 /* make sure reserved bytes are zeroes */
702 dev_err(dev
, "devmem rsc has non zero reserved bytes\n");
706 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
710 ret
= iommu_map(rproc
->domain
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
712 dev_err(dev
, "failed to map devmem: %d\n", ret
);
717 * We'll need this info later when we'll want to unmap everything
718 * (e.g. on shutdown).
720 * We can't trust the remote processor not to change the resource
721 * table, so we must maintain this info independently.
723 mapping
->da
= rsc
->da
;
724 mapping
->len
= rsc
->len
;
725 list_add_tail(&mapping
->node
, &rproc
->mappings
);
727 dev_dbg(dev
, "mapped devmem pa 0x%x, da 0x%x, len 0x%x\n",
728 rsc
->pa
, rsc
->da
, rsc
->len
);
738 * rproc_alloc_carveout() - allocated specified carveout
739 * @rproc: rproc handle
740 * @mem: the memory entry to allocate
742 * This function allocate specified memory entry @mem using
743 * dma_alloc_coherent() as default allocator
745 static int rproc_alloc_carveout(struct rproc
*rproc
,
746 struct rproc_mem_entry
*mem
)
748 struct rproc_mem_entry
*mapping
= NULL
;
749 struct device
*dev
= &rproc
->dev
;
754 va
= dma_alloc_coherent(dev
->parent
, mem
->len
, &dma
, GFP_KERNEL
);
757 "failed to allocate dma memory: len 0x%x\n", mem
->len
);
761 dev_dbg(dev
, "carveout va %pK, dma %pad, len 0x%x\n",
764 if (mem
->da
!= FW_RSC_ADDR_ANY
&& !rproc
->domain
) {
766 * Check requested da is equal to dma address
767 * and print a warn message in case of missalignment.
768 * Don't stop rproc_start sequence as coprocessor may
769 * build pa to da translation on its side.
771 if (mem
->da
!= (u32
)dma
)
772 dev_warn(dev
->parent
,
773 "Allocated carveout doesn't fit device address request\n");
777 * Ok, this is non-standard.
779 * Sometimes we can't rely on the generic iommu-based DMA API
780 * to dynamically allocate the device address and then set the IOMMU
781 * tables accordingly, because some remote processors might
782 * _require_ us to use hard coded device addresses that their
783 * firmware was compiled with.
785 * In this case, we must use the IOMMU API directly and map
786 * the memory to the device address as expected by the remote
789 * Obviously such remote processor devices should not be configured
790 * to use the iommu-based DMA API: we expect 'dma' to contain the
791 * physical address in this case.
793 if (mem
->da
!= FW_RSC_ADDR_ANY
&& rproc
->domain
) {
794 mapping
= kzalloc(sizeof(*mapping
), GFP_KERNEL
);
800 ret
= iommu_map(rproc
->domain
, mem
->da
, dma
, mem
->len
,
803 dev_err(dev
, "iommu_map failed: %d\n", ret
);
808 * We'll need this info later when we'll want to unmap
809 * everything (e.g. on shutdown).
811 * We can't trust the remote processor not to change the
812 * resource table, so we must maintain this info independently.
814 mapping
->da
= mem
->da
;
815 mapping
->len
= mem
->len
;
816 list_add_tail(&mapping
->node
, &rproc
->mappings
);
818 dev_dbg(dev
, "carveout mapped 0x%x to %pad\n",
822 if (mem
->da
== FW_RSC_ADDR_ANY
) {
823 /* Update device address as undefined by requester */
824 if ((u64
)dma
& HIGH_BITS_MASK
)
825 dev_warn(dev
, "DMA address cast in 32bit to fit resource table format\n");
838 dma_free_coherent(dev
->parent
, mem
->len
, va
, dma
);
843 * rproc_release_carveout() - release acquired carveout
844 * @rproc: rproc handle
845 * @mem: the memory entry to release
847 * This function releases specified memory entry @mem allocated via
848 * rproc_alloc_carveout() function by @rproc.
850 static int rproc_release_carveout(struct rproc
*rproc
,
851 struct rproc_mem_entry
*mem
)
853 struct device
*dev
= &rproc
->dev
;
855 /* clean up carveout allocations */
856 dma_free_coherent(dev
->parent
, mem
->len
, mem
->va
, mem
->dma
);
861 * rproc_handle_carveout() - handle phys contig memory allocation requests
862 * @rproc: rproc handle
863 * @rsc: the resource entry
864 * @avail: size of available data (for image validation)
866 * This function will handle firmware requests for allocation of physically
867 * contiguous memory regions.
869 * These request entries should come first in the firmware's resource table,
870 * as other firmware entries might request placing other data objects inside
871 * these memory regions (e.g. data/code segments, trace resource entries, ...).
873 * Allocating memory this way helps utilizing the reserved physical memory
874 * (e.g. CMA) more efficiently, and also minimizes the number of TLB entries
875 * needed to map it (in case @rproc is using an IOMMU). Reducing the TLB
876 * pressure is important; it may have a substantial impact on performance.
878 static int rproc_handle_carveout(struct rproc
*rproc
,
879 struct fw_rsc_carveout
*rsc
,
880 int offset
, int avail
)
882 struct rproc_mem_entry
*carveout
;
883 struct device
*dev
= &rproc
->dev
;
885 if (sizeof(*rsc
) > avail
) {
886 dev_err(dev
, "carveout rsc is truncated\n");
890 /* make sure reserved bytes are zeroes */
892 dev_err(dev
, "carveout rsc has non zero reserved bytes\n");
896 dev_dbg(dev
, "carveout rsc: name: %s, da 0x%x, pa 0x%x, len 0x%x, flags 0x%x\n",
897 rsc
->name
, rsc
->da
, rsc
->pa
, rsc
->len
, rsc
->flags
);
900 * Check carveout rsc already part of a registered carveout,
901 * Search by name, then check the da and length
903 carveout
= rproc_find_carveout_by_name(rproc
, rsc
->name
);
906 if (carveout
->rsc_offset
!= FW_RSC_ADDR_ANY
) {
908 "Carveout already associated to resource table\n");
912 if (rproc_check_carveout_da(rproc
, carveout
, rsc
->da
, rsc
->len
))
915 /* Update memory carveout with resource table info */
916 carveout
->rsc_offset
= offset
;
917 carveout
->flags
= rsc
->flags
;
922 /* Register carveout in in list */
923 carveout
= rproc_mem_entry_init(dev
, 0, 0, rsc
->len
, rsc
->da
,
924 rproc_alloc_carveout
,
925 rproc_release_carveout
, rsc
->name
);
927 dev_err(dev
, "Can't allocate memory entry structure\n");
931 carveout
->flags
= rsc
->flags
;
932 carveout
->rsc_offset
= offset
;
933 rproc_add_carveout(rproc
, carveout
);
939 * rproc_add_carveout() - register an allocated carveout region
940 * @rproc: rproc handle
941 * @mem: memory entry to register
943 * This function registers specified memory entry in @rproc carveouts list.
944 * Specified carveout should have been allocated before registering.
946 void rproc_add_carveout(struct rproc
*rproc
, struct rproc_mem_entry
*mem
)
948 list_add_tail(&mem
->node
, &rproc
->carveouts
);
950 EXPORT_SYMBOL(rproc_add_carveout
);
953 * rproc_mem_entry_init() - allocate and initialize rproc_mem_entry struct
954 * @dev: pointer on device struct
955 * @va: virtual address
957 * @len: memory carveout length
958 * @da: device address
959 * @alloc: memory carveout allocation function
960 * @release: memory carveout release function
961 * @name: carveout name
963 * This function allocates a rproc_mem_entry struct and fill it with parameters
964 * provided by client.
966 struct rproc_mem_entry
*
967 rproc_mem_entry_init(struct device
*dev
,
968 void *va
, dma_addr_t dma
, int len
, u32 da
,
969 int (*alloc
)(struct rproc
*, struct rproc_mem_entry
*),
970 int (*release
)(struct rproc
*, struct rproc_mem_entry
*),
971 const char *name
, ...)
973 struct rproc_mem_entry
*mem
;
976 mem
= kzalloc(sizeof(*mem
), GFP_KERNEL
);
985 mem
->release
= release
;
986 mem
->rsc_offset
= FW_RSC_ADDR_ANY
;
987 mem
->of_resm_idx
= -1;
989 va_start(args
, name
);
990 vsnprintf(mem
->name
, sizeof(mem
->name
), name
, args
);
995 EXPORT_SYMBOL(rproc_mem_entry_init
);
998 * rproc_of_resm_mem_entry_init() - allocate and initialize rproc_mem_entry struct
999 * from a reserved memory phandle
1000 * @dev: pointer on device struct
1001 * @of_resm_idx: reserved memory phandle index in "memory-region"
1002 * @len: memory carveout length
1003 * @da: device address
1004 * @name: carveout name
1006 * This function allocates a rproc_mem_entry struct and fill it with parameters
1007 * provided by client.
1009 struct rproc_mem_entry
*
1010 rproc_of_resm_mem_entry_init(struct device
*dev
, u32 of_resm_idx
, int len
,
1011 u32 da
, const char *name
, ...)
1013 struct rproc_mem_entry
*mem
;
1016 mem
= kzalloc(sizeof(*mem
), GFP_KERNEL
);
1022 mem
->rsc_offset
= FW_RSC_ADDR_ANY
;
1023 mem
->of_resm_idx
= of_resm_idx
;
1025 va_start(args
, name
);
1026 vsnprintf(mem
->name
, sizeof(mem
->name
), name
, args
);
1031 EXPORT_SYMBOL(rproc_of_resm_mem_entry_init
);
1034 * A lookup table for resource handlers. The indices are defined in
1035 * enum fw_resource_type.
1037 static rproc_handle_resource_t rproc_loading_handlers
[RSC_LAST
] = {
1038 [RSC_CARVEOUT
] = (rproc_handle_resource_t
)rproc_handle_carveout
,
1039 [RSC_DEVMEM
] = (rproc_handle_resource_t
)rproc_handle_devmem
,
1040 [RSC_TRACE
] = (rproc_handle_resource_t
)rproc_handle_trace
,
1041 [RSC_VDEV
] = (rproc_handle_resource_t
)rproc_handle_vdev
,
1044 /* handle firmware resource entries before booting the remote processor */
1045 static int rproc_handle_resources(struct rproc
*rproc
,
1046 rproc_handle_resource_t handlers
[RSC_LAST
])
1048 struct device
*dev
= &rproc
->dev
;
1049 rproc_handle_resource_t handler
;
1052 if (!rproc
->table_ptr
)
1055 for (i
= 0; i
< rproc
->table_ptr
->num
; i
++) {
1056 int offset
= rproc
->table_ptr
->offset
[i
];
1057 struct fw_rsc_hdr
*hdr
= (void *)rproc
->table_ptr
+ offset
;
1058 int avail
= rproc
->table_sz
- offset
- sizeof(*hdr
);
1059 void *rsc
= (void *)hdr
+ sizeof(*hdr
);
1061 /* make sure table isn't truncated */
1063 dev_err(dev
, "rsc table is truncated\n");
1067 dev_dbg(dev
, "rsc: type %d\n", hdr
->type
);
1069 if (hdr
->type
>= RSC_LAST
) {
1070 dev_warn(dev
, "unsupported resource %d\n", hdr
->type
);
1074 handler
= handlers
[hdr
->type
];
1078 ret
= handler(rproc
, rsc
, offset
+ sizeof(*hdr
), avail
);
1086 static int rproc_prepare_subdevices(struct rproc
*rproc
)
1088 struct rproc_subdev
*subdev
;
1091 list_for_each_entry(subdev
, &rproc
->subdevs
, node
) {
1092 if (subdev
->prepare
) {
1093 ret
= subdev
->prepare(subdev
);
1095 goto unroll_preparation
;
1102 list_for_each_entry_continue_reverse(subdev
, &rproc
->subdevs
, node
) {
1103 if (subdev
->unprepare
)
1104 subdev
->unprepare(subdev
);
1110 static int rproc_start_subdevices(struct rproc
*rproc
)
1112 struct rproc_subdev
*subdev
;
1115 list_for_each_entry(subdev
, &rproc
->subdevs
, node
) {
1116 if (subdev
->start
) {
1117 ret
= subdev
->start(subdev
);
1119 goto unroll_registration
;
1125 unroll_registration
:
1126 list_for_each_entry_continue_reverse(subdev
, &rproc
->subdevs
, node
) {
1128 subdev
->stop(subdev
, true);
1134 static void rproc_stop_subdevices(struct rproc
*rproc
, bool crashed
)
1136 struct rproc_subdev
*subdev
;
1138 list_for_each_entry_reverse(subdev
, &rproc
->subdevs
, node
) {
1140 subdev
->stop(subdev
, crashed
);
1144 static void rproc_unprepare_subdevices(struct rproc
*rproc
)
1146 struct rproc_subdev
*subdev
;
1148 list_for_each_entry_reverse(subdev
, &rproc
->subdevs
, node
) {
1149 if (subdev
->unprepare
)
1150 subdev
->unprepare(subdev
);
1155 * rproc_alloc_registered_carveouts() - allocate all carveouts registered
1157 * @rproc: the remote processor handle
1159 * This function parses registered carveout list, performs allocation
1160 * if alloc() ops registered and updates resource table information
1161 * if rsc_offset set.
1163 * Return: 0 on success
1165 static int rproc_alloc_registered_carveouts(struct rproc
*rproc
)
1167 struct rproc_mem_entry
*entry
, *tmp
;
1168 struct fw_rsc_carveout
*rsc
;
1169 struct device
*dev
= &rproc
->dev
;
1173 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
1175 ret
= entry
->alloc(rproc
, entry
);
1177 dev_err(dev
, "Unable to allocate carveout %s: %d\n",
1183 if (entry
->rsc_offset
!= FW_RSC_ADDR_ANY
) {
1184 /* update resource table */
1185 rsc
= (void *)rproc
->table_ptr
+ entry
->rsc_offset
;
1188 * Some remote processors might need to know the pa
1189 * even though they are behind an IOMMU. E.g., OMAP4's
1190 * remote M3 processor needs this so it can control
1191 * on-chip hardware accelerators that are not behind
1192 * the IOMMU, and therefor must know the pa.
1194 * Generally we don't want to expose physical addresses
1195 * if we don't have to (remote processors are generally
1196 * _not_ trusted), so we might want to do this only for
1197 * remote processor that _must_ have this (e.g. OMAP4's
1198 * dual M3 subsystem).
1200 * Non-IOMMU processors might also want to have this info.
1201 * In this case, the device address and the physical address
1205 /* Use va if defined else dma to generate pa */
1207 pa
= (u64
)rproc_va_to_pa(entry
->va
);
1209 pa
= (u64
)entry
->dma
;
1211 if (((u64
)pa
) & HIGH_BITS_MASK
)
1213 "Physical address cast in 32bit to fit resource table format\n");
1216 rsc
->da
= entry
->da
;
1217 rsc
->len
= entry
->len
;
1225 * rproc_coredump_cleanup() - clean up dump_segments list
1226 * @rproc: the remote processor handle
1228 static void rproc_coredump_cleanup(struct rproc
*rproc
)
1230 struct rproc_dump_segment
*entry
, *tmp
;
1232 list_for_each_entry_safe(entry
, tmp
, &rproc
->dump_segments
, node
) {
1233 list_del(&entry
->node
);
1239 * rproc_resource_cleanup() - clean up and free all acquired resources
1240 * @rproc: rproc handle
1242 * This function will free all resources acquired for @rproc, and it
1243 * is called whenever @rproc either shuts down or fails to boot.
1245 static void rproc_resource_cleanup(struct rproc
*rproc
)
1247 struct rproc_mem_entry
*entry
, *tmp
;
1248 struct rproc_debug_trace
*trace
, *ttmp
;
1249 struct rproc_vdev
*rvdev
, *rvtmp
;
1250 struct device
*dev
= &rproc
->dev
;
1252 /* clean up debugfs trace entries */
1253 list_for_each_entry_safe(trace
, ttmp
, &rproc
->traces
, node
) {
1254 rproc_remove_trace_file(trace
->tfile
);
1255 rproc
->num_traces
--;
1256 list_del(&trace
->node
);
1260 /* clean up iommu mapping entries */
1261 list_for_each_entry_safe(entry
, tmp
, &rproc
->mappings
, node
) {
1264 unmapped
= iommu_unmap(rproc
->domain
, entry
->da
, entry
->len
);
1265 if (unmapped
!= entry
->len
) {
1266 /* nothing much to do besides complaining */
1267 dev_err(dev
, "failed to unmap %u/%zu\n", entry
->len
,
1271 list_del(&entry
->node
);
1275 /* clean up carveout allocations */
1276 list_for_each_entry_safe(entry
, tmp
, &rproc
->carveouts
, node
) {
1278 entry
->release(rproc
, entry
);
1279 list_del(&entry
->node
);
1283 /* clean up remote vdev entries */
1284 list_for_each_entry_safe(rvdev
, rvtmp
, &rproc
->rvdevs
, node
)
1285 kref_put(&rvdev
->refcount
, rproc_vdev_release
);
1287 rproc_coredump_cleanup(rproc
);
1290 static int rproc_start(struct rproc
*rproc
, const struct firmware
*fw
)
1292 struct resource_table
*loaded_table
;
1293 struct device
*dev
= &rproc
->dev
;
1296 /* load the ELF segments to memory */
1297 ret
= rproc_load_segments(rproc
, fw
);
1299 dev_err(dev
, "Failed to load program segments: %d\n", ret
);
1304 * The starting device has been given the rproc->cached_table as the
1305 * resource table. The address of the vring along with the other
1306 * allocated resources (carveouts etc) is stored in cached_table.
1307 * In order to pass this information to the remote device we must copy
1308 * this information to device memory. We also update the table_ptr so
1309 * that any subsequent changes will be applied to the loaded version.
1311 loaded_table
= rproc_find_loaded_rsc_table(rproc
, fw
);
1313 memcpy(loaded_table
, rproc
->cached_table
, rproc
->table_sz
);
1314 rproc
->table_ptr
= loaded_table
;
1317 ret
= rproc_prepare_subdevices(rproc
);
1319 dev_err(dev
, "failed to prepare subdevices for %s: %d\n",
1321 goto reset_table_ptr
;
1324 /* power up the remote processor */
1325 ret
= rproc
->ops
->start(rproc
);
1327 dev_err(dev
, "can't start rproc %s: %d\n", rproc
->name
, ret
);
1328 goto unprepare_subdevices
;
1331 /* Start any subdevices for the remote processor */
1332 ret
= rproc_start_subdevices(rproc
);
1334 dev_err(dev
, "failed to probe subdevices for %s: %d\n",
1339 rproc
->state
= RPROC_RUNNING
;
1341 dev_info(dev
, "remote processor %s is now up\n", rproc
->name
);
1346 rproc
->ops
->stop(rproc
);
1347 unprepare_subdevices
:
1348 rproc_unprepare_subdevices(rproc
);
1350 rproc
->table_ptr
= rproc
->cached_table
;
1356 * take a firmware and boot a remote processor with it.
1358 static int rproc_fw_boot(struct rproc
*rproc
, const struct firmware
*fw
)
1360 struct device
*dev
= &rproc
->dev
;
1361 const char *name
= rproc
->firmware
;
1364 ret
= rproc_fw_sanity_check(rproc
, fw
);
1368 dev_info(dev
, "Booting fw image %s, size %zd\n", name
, fw
->size
);
1371 * if enabling an IOMMU isn't relevant for this rproc, this is
1374 ret
= rproc_enable_iommu(rproc
);
1376 dev_err(dev
, "can't enable iommu: %d\n", ret
);
1380 rproc
->bootaddr
= rproc_get_boot_addr(rproc
, fw
);
1382 /* Load resource table, core dump segment list etc from the firmware */
1383 ret
= rproc_parse_fw(rproc
, fw
);
1387 /* reset max_notifyid */
1388 rproc
->max_notifyid
= -1;
1390 /* reset handled vdev */
1393 /* handle fw resources which are required to boot rproc */
1394 ret
= rproc_handle_resources(rproc
, rproc_loading_handlers
);
1396 dev_err(dev
, "Failed to process resources: %d\n", ret
);
1397 goto clean_up_resources
;
1400 /* Allocate carveout resources associated to rproc */
1401 ret
= rproc_alloc_registered_carveouts(rproc
);
1403 dev_err(dev
, "Failed to allocate associated carveouts: %d\n",
1405 goto clean_up_resources
;
1408 ret
= rproc_start(rproc
, fw
);
1410 goto clean_up_resources
;
1415 rproc_resource_cleanup(rproc
);
1416 kfree(rproc
->cached_table
);
1417 rproc
->cached_table
= NULL
;
1418 rproc
->table_ptr
= NULL
;
1420 rproc_disable_iommu(rproc
);
1425 * take a firmware and boot it up.
1427 * Note: this function is called asynchronously upon registration of the
1428 * remote processor (so we must wait until it completes before we try
1429 * to unregister the device. one other option is just to use kref here,
1430 * that might be cleaner).
1432 static void rproc_auto_boot_callback(const struct firmware
*fw
, void *context
)
1434 struct rproc
*rproc
= context
;
1438 release_firmware(fw
);
1441 static int rproc_trigger_auto_boot(struct rproc
*rproc
)
1446 * We're initiating an asynchronous firmware loading, so we can
1447 * be built-in kernel code, without hanging the boot process.
1449 ret
= request_firmware_nowait(THIS_MODULE
, FW_ACTION_HOTPLUG
,
1450 rproc
->firmware
, &rproc
->dev
, GFP_KERNEL
,
1451 rproc
, rproc_auto_boot_callback
);
1453 dev_err(&rproc
->dev
, "request_firmware_nowait err: %d\n", ret
);
1458 static int rproc_stop(struct rproc
*rproc
, bool crashed
)
1460 struct device
*dev
= &rproc
->dev
;
1463 /* Stop any subdevices for the remote processor */
1464 rproc_stop_subdevices(rproc
, crashed
);
1466 /* the installed resource table is no longer accessible */
1467 rproc
->table_ptr
= rproc
->cached_table
;
1469 /* power off the remote processor */
1470 ret
= rproc
->ops
->stop(rproc
);
1472 dev_err(dev
, "can't stop rproc: %d\n", ret
);
1476 rproc_unprepare_subdevices(rproc
);
1478 rproc
->state
= RPROC_OFFLINE
;
1480 dev_info(dev
, "stopped remote processor %s\n", rproc
->name
);
1486 * rproc_coredump_add_segment() - add segment of device memory to coredump
1487 * @rproc: handle of a remote processor
1488 * @da: device address
1489 * @size: size of segment
1491 * Add device memory to the list of segments to be included in a coredump for
1494 * Return: 0 on success, negative errno on error.
1496 int rproc_coredump_add_segment(struct rproc
*rproc
, dma_addr_t da
, size_t size
)
1498 struct rproc_dump_segment
*segment
;
1500 segment
= kzalloc(sizeof(*segment
), GFP_KERNEL
);
1505 segment
->size
= size
;
1507 list_add_tail(&segment
->node
, &rproc
->dump_segments
);
1511 EXPORT_SYMBOL(rproc_coredump_add_segment
);
1514 * rproc_coredump_add_custom_segment() - add custom coredump segment
1515 * @rproc: handle of a remote processor
1516 * @da: device address
1517 * @size: size of segment
1518 * @dumpfn: custom dump function called for each segment during coredump
1519 * @priv: private data
1521 * Add device memory to the list of segments to be included in the coredump
1522 * and associate the segment with the given custom dump function and private
1525 * Return: 0 on success, negative errno on error.
1527 int rproc_coredump_add_custom_segment(struct rproc
*rproc
,
1528 dma_addr_t da
, size_t size
,
1529 void (*dumpfn
)(struct rproc
*rproc
,
1530 struct rproc_dump_segment
*segment
,
1534 struct rproc_dump_segment
*segment
;
1536 segment
= kzalloc(sizeof(*segment
), GFP_KERNEL
);
1541 segment
->size
= size
;
1542 segment
->priv
= priv
;
1543 segment
->dump
= dumpfn
;
1545 list_add_tail(&segment
->node
, &rproc
->dump_segments
);
1549 EXPORT_SYMBOL(rproc_coredump_add_custom_segment
);
1552 * rproc_coredump() - perform coredump
1553 * @rproc: rproc handle
1555 * This function will generate an ELF header for the registered segments
1556 * and create a devcoredump device associated with rproc.
1558 static void rproc_coredump(struct rproc
*rproc
)
1560 struct rproc_dump_segment
*segment
;
1561 struct elf32_phdr
*phdr
;
1562 struct elf32_hdr
*ehdr
;
1569 if (list_empty(&rproc
->dump_segments
))
1572 data_size
= sizeof(*ehdr
);
1573 list_for_each_entry(segment
, &rproc
->dump_segments
, node
) {
1574 data_size
+= sizeof(*phdr
) + segment
->size
;
1579 data
= vmalloc(data_size
);
1585 memset(ehdr
, 0, sizeof(*ehdr
));
1586 memcpy(ehdr
->e_ident
, ELFMAG
, SELFMAG
);
1587 ehdr
->e_ident
[EI_CLASS
] = ELFCLASS32
;
1588 ehdr
->e_ident
[EI_DATA
] = ELFDATA2LSB
;
1589 ehdr
->e_ident
[EI_VERSION
] = EV_CURRENT
;
1590 ehdr
->e_ident
[EI_OSABI
] = ELFOSABI_NONE
;
1591 ehdr
->e_type
= ET_CORE
;
1592 ehdr
->e_machine
= EM_NONE
;
1593 ehdr
->e_version
= EV_CURRENT
;
1594 ehdr
->e_entry
= rproc
->bootaddr
;
1595 ehdr
->e_phoff
= sizeof(*ehdr
);
1596 ehdr
->e_ehsize
= sizeof(*ehdr
);
1597 ehdr
->e_phentsize
= sizeof(*phdr
);
1598 ehdr
->e_phnum
= phnum
;
1600 phdr
= data
+ ehdr
->e_phoff
;
1601 offset
= ehdr
->e_phoff
+ sizeof(*phdr
) * ehdr
->e_phnum
;
1602 list_for_each_entry(segment
, &rproc
->dump_segments
, node
) {
1603 memset(phdr
, 0, sizeof(*phdr
));
1604 phdr
->p_type
= PT_LOAD
;
1605 phdr
->p_offset
= offset
;
1606 phdr
->p_vaddr
= segment
->da
;
1607 phdr
->p_paddr
= segment
->da
;
1608 phdr
->p_filesz
= segment
->size
;
1609 phdr
->p_memsz
= segment
->size
;
1610 phdr
->p_flags
= PF_R
| PF_W
| PF_X
;
1613 if (segment
->dump
) {
1614 segment
->dump(rproc
, segment
, data
+ offset
);
1616 ptr
= rproc_da_to_va(rproc
, segment
->da
, segment
->size
);
1618 dev_err(&rproc
->dev
,
1619 "invalid coredump segment (%pad, %zu)\n",
1620 &segment
->da
, segment
->size
);
1621 memset(data
+ offset
, 0xff, segment
->size
);
1623 memcpy(data
+ offset
, ptr
, segment
->size
);
1627 offset
+= phdr
->p_filesz
;
1631 dev_coredumpv(&rproc
->dev
, data
, data_size
, GFP_KERNEL
);
1635 * rproc_trigger_recovery() - recover a remoteproc
1636 * @rproc: the remote processor
1638 * The recovery is done by resetting all the virtio devices, that way all the
1639 * rpmsg drivers will be reseted along with the remote processor making the
1640 * remoteproc functional again.
1642 * This function can sleep, so it cannot be called from atomic context.
1644 int rproc_trigger_recovery(struct rproc
*rproc
)
1646 const struct firmware
*firmware_p
;
1647 struct device
*dev
= &rproc
->dev
;
1650 dev_err(dev
, "recovering %s\n", rproc
->name
);
1652 ret
= mutex_lock_interruptible(&rproc
->lock
);
1656 ret
= rproc_stop(rproc
, true);
1660 /* generate coredump */
1661 rproc_coredump(rproc
);
1664 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1666 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1670 /* boot the remote processor up again */
1671 ret
= rproc_start(rproc
, firmware_p
);
1673 release_firmware(firmware_p
);
1676 mutex_unlock(&rproc
->lock
);
1681 * rproc_crash_handler_work() - handle a crash
1683 * This function needs to handle everything related to a crash, like cpu
1684 * registers and stack dump, information to help to debug the fatal error, etc.
1686 static void rproc_crash_handler_work(struct work_struct
*work
)
1688 struct rproc
*rproc
= container_of(work
, struct rproc
, crash_handler
);
1689 struct device
*dev
= &rproc
->dev
;
1691 dev_dbg(dev
, "enter %s\n", __func__
);
1693 mutex_lock(&rproc
->lock
);
1695 if (rproc
->state
== RPROC_CRASHED
|| rproc
->state
== RPROC_OFFLINE
) {
1696 /* handle only the first crash detected */
1697 mutex_unlock(&rproc
->lock
);
1701 rproc
->state
= RPROC_CRASHED
;
1702 dev_err(dev
, "handling crash #%u in %s\n", ++rproc
->crash_cnt
,
1705 mutex_unlock(&rproc
->lock
);
1707 if (!rproc
->recovery_disabled
)
1708 rproc_trigger_recovery(rproc
);
1712 * rproc_boot() - boot a remote processor
1713 * @rproc: handle of a remote processor
1715 * Boot a remote processor (i.e. load its firmware, power it on, ...).
1717 * If the remote processor is already powered on, this function immediately
1718 * returns (successfully).
1720 * Returns 0 on success, and an appropriate error value otherwise.
1722 int rproc_boot(struct rproc
*rproc
)
1724 const struct firmware
*firmware_p
;
1729 pr_err("invalid rproc handle\n");
1735 ret
= mutex_lock_interruptible(&rproc
->lock
);
1737 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1741 if (rproc
->state
== RPROC_DELETED
) {
1743 dev_err(dev
, "can't boot deleted rproc %s\n", rproc
->name
);
1747 /* skip the boot process if rproc is already powered up */
1748 if (atomic_inc_return(&rproc
->power
) > 1) {
1753 dev_info(dev
, "powering up %s\n", rproc
->name
);
1756 ret
= request_firmware(&firmware_p
, rproc
->firmware
, dev
);
1758 dev_err(dev
, "request_firmware failed: %d\n", ret
);
1762 ret
= rproc_fw_boot(rproc
, firmware_p
);
1764 release_firmware(firmware_p
);
1768 atomic_dec(&rproc
->power
);
1770 mutex_unlock(&rproc
->lock
);
1773 EXPORT_SYMBOL(rproc_boot
);
1776 * rproc_shutdown() - power off the remote processor
1777 * @rproc: the remote processor
1779 * Power off a remote processor (previously booted with rproc_boot()).
1781 * In case @rproc is still being used by an additional user(s), then
1782 * this function will just decrement the power refcount and exit,
1783 * without really powering off the device.
1785 * Every call to rproc_boot() must (eventually) be accompanied by a call
1786 * to rproc_shutdown(). Calling rproc_shutdown() redundantly is a bug.
1789 * - we're not decrementing the rproc's refcount, only the power refcount.
1790 * which means that the @rproc handle stays valid even after rproc_shutdown()
1791 * returns, and users can still use it with a subsequent rproc_boot(), if
1794 void rproc_shutdown(struct rproc
*rproc
)
1796 struct device
*dev
= &rproc
->dev
;
1799 ret
= mutex_lock_interruptible(&rproc
->lock
);
1801 dev_err(dev
, "can't lock rproc %s: %d\n", rproc
->name
, ret
);
1805 /* if the remote proc is still needed, bail out */
1806 if (!atomic_dec_and_test(&rproc
->power
))
1809 ret
= rproc_stop(rproc
, false);
1811 atomic_inc(&rproc
->power
);
1815 /* clean up all acquired resources */
1816 rproc_resource_cleanup(rproc
);
1818 rproc_disable_iommu(rproc
);
1820 /* Free the copy of the resource table */
1821 kfree(rproc
->cached_table
);
1822 rproc
->cached_table
= NULL
;
1823 rproc
->table_ptr
= NULL
;
1825 mutex_unlock(&rproc
->lock
);
1827 EXPORT_SYMBOL(rproc_shutdown
);
1830 * rproc_get_by_phandle() - find a remote processor by phandle
1831 * @phandle: phandle to the rproc
1833 * Finds an rproc handle using the remote processor's phandle, and then
1834 * return a handle to the rproc.
1836 * This function increments the remote processor's refcount, so always
1837 * use rproc_put() to decrement it back once rproc isn't needed anymore.
1839 * Returns the rproc handle on success, and NULL on failure.
1842 struct rproc
*rproc_get_by_phandle(phandle phandle
)
1844 struct rproc
*rproc
= NULL
, *r
;
1845 struct device_node
*np
;
1847 np
= of_find_node_by_phandle(phandle
);
1851 mutex_lock(&rproc_list_mutex
);
1852 list_for_each_entry(r
, &rproc_list
, node
) {
1853 if (r
->dev
.parent
&& r
->dev
.parent
->of_node
== np
) {
1854 /* prevent underlying implementation from being removed */
1855 if (!try_module_get(r
->dev
.parent
->driver
->owner
)) {
1856 dev_err(&r
->dev
, "can't get owner\n");
1861 get_device(&rproc
->dev
);
1865 mutex_unlock(&rproc_list_mutex
);
1872 struct rproc
*rproc_get_by_phandle(phandle phandle
)
1877 EXPORT_SYMBOL(rproc_get_by_phandle
);
1880 * rproc_add() - register a remote processor
1881 * @rproc: the remote processor handle to register
1883 * Registers @rproc with the remoteproc framework, after it has been
1884 * allocated with rproc_alloc().
1886 * This is called by the platform-specific rproc implementation, whenever
1887 * a new remote processor device is probed.
1889 * Returns 0 on success and an appropriate error code otherwise.
1891 * Note: this function initiates an asynchronous firmware loading
1892 * context, which will look for virtio devices supported by the rproc's
1895 * If found, those virtio devices will be created and added, so as a result
1896 * of registering this remote processor, additional virtio drivers might be
1899 int rproc_add(struct rproc
*rproc
)
1901 struct device
*dev
= &rproc
->dev
;
1904 ret
= device_add(dev
);
1908 dev_info(dev
, "%s is available\n", rproc
->name
);
1910 /* create debugfs entries */
1911 rproc_create_debug_dir(rproc
);
1913 /* if rproc is marked always-on, request it to boot */
1914 if (rproc
->auto_boot
) {
1915 ret
= rproc_trigger_auto_boot(rproc
);
1920 /* expose to rproc_get_by_phandle users */
1921 mutex_lock(&rproc_list_mutex
);
1922 list_add(&rproc
->node
, &rproc_list
);
1923 mutex_unlock(&rproc_list_mutex
);
1927 EXPORT_SYMBOL(rproc_add
);
1930 * rproc_type_release() - release a remote processor instance
1931 * @dev: the rproc's device
1933 * This function should _never_ be called directly.
1935 * It will be called by the driver core when no one holds a valid pointer
1938 static void rproc_type_release(struct device
*dev
)
1940 struct rproc
*rproc
= container_of(dev
, struct rproc
, dev
);
1942 dev_info(&rproc
->dev
, "releasing %s\n", rproc
->name
);
1944 idr_destroy(&rproc
->notifyids
);
1946 if (rproc
->index
>= 0)
1947 ida_simple_remove(&rproc_dev_index
, rproc
->index
);
1949 kfree(rproc
->firmware
);
1954 static const struct device_type rproc_type
= {
1955 .name
= "remoteproc",
1956 .release
= rproc_type_release
,
1960 * rproc_alloc() - allocate a remote processor handle
1961 * @dev: the underlying device
1962 * @name: name of this remote processor
1963 * @ops: platform-specific handlers (mainly start/stop)
1964 * @firmware: name of firmware file to load, can be NULL
1965 * @len: length of private data needed by the rproc driver (in bytes)
1967 * Allocates a new remote processor handle, but does not register
1968 * it yet. if @firmware is NULL, a default name is used.
1970 * This function should be used by rproc implementations during initialization
1971 * of the remote processor.
1973 * After creating an rproc handle using this function, and when ready,
1974 * implementations should then call rproc_add() to complete
1975 * the registration of the remote processor.
1977 * On success the new rproc is returned, and on failure, NULL.
1979 * Note: _never_ directly deallocate @rproc, even if it was not registered
1980 * yet. Instead, when you need to unroll rproc_alloc(), use rproc_free().
1982 struct rproc
*rproc_alloc(struct device
*dev
, const char *name
,
1983 const struct rproc_ops
*ops
,
1984 const char *firmware
, int len
)
1986 struct rproc
*rproc
;
1987 char *p
, *template = "rproc-%s-fw";
1990 if (!dev
|| !name
|| !ops
)
1995 * If the caller didn't pass in a firmware name then
1996 * construct a default name.
1998 name_len
= strlen(name
) + strlen(template) - 2 + 1;
1999 p
= kmalloc(name_len
, GFP_KERNEL
);
2002 snprintf(p
, name_len
, template, name
);
2004 p
= kstrdup(firmware
, GFP_KERNEL
);
2009 rproc
= kzalloc(sizeof(struct rproc
) + len
, GFP_KERNEL
);
2015 rproc
->ops
= kmemdup(ops
, sizeof(*ops
), GFP_KERNEL
);
2022 rproc
->firmware
= p
;
2024 rproc
->priv
= &rproc
[1];
2025 rproc
->auto_boot
= true;
2027 device_initialize(&rproc
->dev
);
2028 rproc
->dev
.parent
= dev
;
2029 rproc
->dev
.type
= &rproc_type
;
2030 rproc
->dev
.class = &rproc_class
;
2031 rproc
->dev
.driver_data
= rproc
;
2033 /* Assign a unique device index and name */
2034 rproc
->index
= ida_simple_get(&rproc_dev_index
, 0, 0, GFP_KERNEL
);
2035 if (rproc
->index
< 0) {
2036 dev_err(dev
, "ida_simple_get failed: %d\n", rproc
->index
);
2037 put_device(&rproc
->dev
);
2041 dev_set_name(&rproc
->dev
, "remoteproc%d", rproc
->index
);
2043 atomic_set(&rproc
->power
, 0);
2045 /* Default to ELF loader if no load function is specified */
2046 if (!rproc
->ops
->load
) {
2047 rproc
->ops
->load
= rproc_elf_load_segments
;
2048 rproc
->ops
->parse_fw
= rproc_elf_load_rsc_table
;
2049 rproc
->ops
->find_loaded_rsc_table
= rproc_elf_find_loaded_rsc_table
;
2050 rproc
->ops
->sanity_check
= rproc_elf_sanity_check
;
2051 rproc
->ops
->get_boot_addr
= rproc_elf_get_boot_addr
;
2054 mutex_init(&rproc
->lock
);
2056 idr_init(&rproc
->notifyids
);
2058 INIT_LIST_HEAD(&rproc
->carveouts
);
2059 INIT_LIST_HEAD(&rproc
->mappings
);
2060 INIT_LIST_HEAD(&rproc
->traces
);
2061 INIT_LIST_HEAD(&rproc
->rvdevs
);
2062 INIT_LIST_HEAD(&rproc
->subdevs
);
2063 INIT_LIST_HEAD(&rproc
->dump_segments
);
2065 INIT_WORK(&rproc
->crash_handler
, rproc_crash_handler_work
);
2067 rproc
->state
= RPROC_OFFLINE
;
2071 EXPORT_SYMBOL(rproc_alloc
);
2074 * rproc_free() - unroll rproc_alloc()
2075 * @rproc: the remote processor handle
2077 * This function decrements the rproc dev refcount.
2079 * If no one holds any reference to rproc anymore, then its refcount would
2080 * now drop to zero, and it would be freed.
2082 void rproc_free(struct rproc
*rproc
)
2084 put_device(&rproc
->dev
);
2086 EXPORT_SYMBOL(rproc_free
);
2089 * rproc_put() - release rproc reference
2090 * @rproc: the remote processor handle
2092 * This function decrements the rproc dev refcount.
2094 * If no one holds any reference to rproc anymore, then its refcount would
2095 * now drop to zero, and it would be freed.
2097 void rproc_put(struct rproc
*rproc
)
2099 module_put(rproc
->dev
.parent
->driver
->owner
);
2100 put_device(&rproc
->dev
);
2102 EXPORT_SYMBOL(rproc_put
);
2105 * rproc_del() - unregister a remote processor
2106 * @rproc: rproc handle to unregister
2108 * This function should be called when the platform specific rproc
2109 * implementation decides to remove the rproc device. it should
2110 * _only_ be called if a previous invocation of rproc_add()
2111 * has completed successfully.
2113 * After rproc_del() returns, @rproc isn't freed yet, because
2114 * of the outstanding reference created by rproc_alloc. To decrement that
2115 * one last refcount, one still needs to call rproc_free().
2117 * Returns 0 on success and -EINVAL if @rproc isn't valid.
2119 int rproc_del(struct rproc
*rproc
)
2124 /* if rproc is marked always-on, rproc_add() booted it */
2125 /* TODO: make sure this works with rproc->power > 1 */
2126 if (rproc
->auto_boot
)
2127 rproc_shutdown(rproc
);
2129 mutex_lock(&rproc
->lock
);
2130 rproc
->state
= RPROC_DELETED
;
2131 mutex_unlock(&rproc
->lock
);
2133 rproc_delete_debug_dir(rproc
);
2135 /* the rproc is downref'ed as soon as it's removed from the klist */
2136 mutex_lock(&rproc_list_mutex
);
2137 list_del(&rproc
->node
);
2138 mutex_unlock(&rproc_list_mutex
);
2140 device_del(&rproc
->dev
);
2144 EXPORT_SYMBOL(rproc_del
);
2147 * rproc_add_subdev() - add a subdevice to a remoteproc
2148 * @rproc: rproc handle to add the subdevice to
2149 * @subdev: subdev handle to register
2151 * Caller is responsible for populating optional subdevice function pointers.
2153 void rproc_add_subdev(struct rproc
*rproc
, struct rproc_subdev
*subdev
)
2155 list_add_tail(&subdev
->node
, &rproc
->subdevs
);
2157 EXPORT_SYMBOL(rproc_add_subdev
);
2160 * rproc_remove_subdev() - remove a subdevice from a remoteproc
2161 * @rproc: rproc handle to remove the subdevice from
2162 * @subdev: subdev handle, previously registered with rproc_add_subdev()
2164 void rproc_remove_subdev(struct rproc
*rproc
, struct rproc_subdev
*subdev
)
2166 list_del(&subdev
->node
);
2168 EXPORT_SYMBOL(rproc_remove_subdev
);
2171 * rproc_get_by_child() - acquire rproc handle of @dev's ancestor
2172 * @dev: child device to find ancestor of
2174 * Returns the ancestor rproc instance, or NULL if not found.
2176 struct rproc
*rproc_get_by_child(struct device
*dev
)
2178 for (dev
= dev
->parent
; dev
; dev
= dev
->parent
) {
2179 if (dev
->type
== &rproc_type
)
2180 return dev
->driver_data
;
2185 EXPORT_SYMBOL(rproc_get_by_child
);
2188 * rproc_report_crash() - rproc crash reporter function
2189 * @rproc: remote processor
2192 * This function must be called every time a crash is detected by the low-level
2193 * drivers implementing a specific remoteproc. This should not be called from a
2194 * non-remoteproc driver.
2196 * This function can be called from atomic/interrupt context.
2198 void rproc_report_crash(struct rproc
*rproc
, enum rproc_crash_type type
)
2201 pr_err("NULL rproc pointer\n");
2205 dev_err(&rproc
->dev
, "crash detected in %s: type %s\n",
2206 rproc
->name
, rproc_crash_to_string(type
));
2208 /* create a new task to handle the error */
2209 schedule_work(&rproc
->crash_handler
);
2211 EXPORT_SYMBOL(rproc_report_crash
);
2213 static int __init
remoteproc_init(void)
2216 rproc_init_debugfs();
2220 module_init(remoteproc_init
);
2222 static void __exit
remoteproc_exit(void)
2224 ida_destroy(&rproc_dev_index
);
2226 rproc_exit_debugfs();
2229 module_exit(remoteproc_exit
);
2231 MODULE_LICENSE("GPL v2");
2232 MODULE_DESCRIPTION("Generic Remote Processor Framework");