[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Analysis / ScalarEvolutionExpander.cpp
blobbceec921188e221519bc8acbe10123a382fea8d6
1 //===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the implementation of the scalar evolution expander,
10 // which is used to generate the code corresponding to a given scalar evolution
11 // expression.
13 //===----------------------------------------------------------------------===//
15 #include "llvm/Analysis/ScalarEvolutionExpander.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/SmallSet.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/LLVMContext.h"
25 #include "llvm/IR/Module.h"
26 #include "llvm/IR/PatternMatch.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
30 using namespace llvm;
31 using namespace PatternMatch;
33 /// ReuseOrCreateCast - Arrange for there to be a cast of V to Ty at IP,
34 /// reusing an existing cast if a suitable one exists, moving an existing
35 /// cast if a suitable one exists but isn't in the right place, or
36 /// creating a new one.
37 Value *SCEVExpander::ReuseOrCreateCast(Value *V, Type *Ty,
38 Instruction::CastOps Op,
39 BasicBlock::iterator IP) {
40 // This function must be called with the builder having a valid insertion
41 // point. It doesn't need to be the actual IP where the uses of the returned
42 // cast will be added, but it must dominate such IP.
43 // We use this precondition to produce a cast that will dominate all its
44 // uses. In particular, this is crucial for the case where the builder's
45 // insertion point *is* the point where we were asked to put the cast.
46 // Since we don't know the builder's insertion point is actually
47 // where the uses will be added (only that it dominates it), we are
48 // not allowed to move it.
49 BasicBlock::iterator BIP = Builder.GetInsertPoint();
51 Instruction *Ret = nullptr;
53 // Check to see if there is already a cast!
54 for (User *U : V->users())
55 if (U->getType() == Ty)
56 if (CastInst *CI = dyn_cast<CastInst>(U))
57 if (CI->getOpcode() == Op) {
58 // If the cast isn't where we want it, create a new cast at IP.
59 // Likewise, do not reuse a cast at BIP because it must dominate
60 // instructions that might be inserted before BIP.
61 if (BasicBlock::iterator(CI) != IP || BIP == IP) {
62 // Create a new cast, and leave the old cast in place in case
63 // it is being used as an insert point.
64 Ret = CastInst::Create(Op, V, Ty, "", &*IP);
65 Ret->takeName(CI);
66 CI->replaceAllUsesWith(Ret);
67 break;
69 Ret = CI;
70 break;
73 // Create a new cast.
74 if (!Ret)
75 Ret = CastInst::Create(Op, V, Ty, V->getName(), &*IP);
77 // We assert at the end of the function since IP might point to an
78 // instruction with different dominance properties than a cast
79 // (an invoke for example) and not dominate BIP (but the cast does).
80 assert(SE.DT.dominates(Ret, &*BIP));
82 rememberInstruction(Ret);
83 return Ret;
86 static BasicBlock::iterator findInsertPointAfter(Instruction *I,
87 BasicBlock *MustDominate) {
88 BasicBlock::iterator IP = ++I->getIterator();
89 if (auto *II = dyn_cast<InvokeInst>(I))
90 IP = II->getNormalDest()->begin();
92 while (isa<PHINode>(IP))
93 ++IP;
95 if (isa<FuncletPadInst>(IP) || isa<LandingPadInst>(IP)) {
96 ++IP;
97 } else if (isa<CatchSwitchInst>(IP)) {
98 IP = MustDominate->getFirstInsertionPt();
99 } else {
100 assert(!IP->isEHPad() && "unexpected eh pad!");
103 return IP;
106 /// InsertNoopCastOfTo - Insert a cast of V to the specified type,
107 /// which must be possible with a noop cast, doing what we can to share
108 /// the casts.
109 Value *SCEVExpander::InsertNoopCastOfTo(Value *V, Type *Ty) {
110 Instruction::CastOps Op = CastInst::getCastOpcode(V, false, Ty, false);
111 assert((Op == Instruction::BitCast ||
112 Op == Instruction::PtrToInt ||
113 Op == Instruction::IntToPtr) &&
114 "InsertNoopCastOfTo cannot perform non-noop casts!");
115 assert(SE.getTypeSizeInBits(V->getType()) == SE.getTypeSizeInBits(Ty) &&
116 "InsertNoopCastOfTo cannot change sizes!");
118 // Short-circuit unnecessary bitcasts.
119 if (Op == Instruction::BitCast) {
120 if (V->getType() == Ty)
121 return V;
122 if (CastInst *CI = dyn_cast<CastInst>(V)) {
123 if (CI->getOperand(0)->getType() == Ty)
124 return CI->getOperand(0);
127 // Short-circuit unnecessary inttoptr<->ptrtoint casts.
128 if ((Op == Instruction::PtrToInt || Op == Instruction::IntToPtr) &&
129 SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(V->getType())) {
130 if (CastInst *CI = dyn_cast<CastInst>(V))
131 if ((CI->getOpcode() == Instruction::PtrToInt ||
132 CI->getOpcode() == Instruction::IntToPtr) &&
133 SE.getTypeSizeInBits(CI->getType()) ==
134 SE.getTypeSizeInBits(CI->getOperand(0)->getType()))
135 return CI->getOperand(0);
136 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
137 if ((CE->getOpcode() == Instruction::PtrToInt ||
138 CE->getOpcode() == Instruction::IntToPtr) &&
139 SE.getTypeSizeInBits(CE->getType()) ==
140 SE.getTypeSizeInBits(CE->getOperand(0)->getType()))
141 return CE->getOperand(0);
144 // Fold a cast of a constant.
145 if (Constant *C = dyn_cast<Constant>(V))
146 return ConstantExpr::getCast(Op, C, Ty);
148 // Cast the argument at the beginning of the entry block, after
149 // any bitcasts of other arguments.
150 if (Argument *A = dyn_cast<Argument>(V)) {
151 BasicBlock::iterator IP = A->getParent()->getEntryBlock().begin();
152 while ((isa<BitCastInst>(IP) &&
153 isa<Argument>(cast<BitCastInst>(IP)->getOperand(0)) &&
154 cast<BitCastInst>(IP)->getOperand(0) != A) ||
155 isa<DbgInfoIntrinsic>(IP))
156 ++IP;
157 return ReuseOrCreateCast(A, Ty, Op, IP);
160 // Cast the instruction immediately after the instruction.
161 Instruction *I = cast<Instruction>(V);
162 BasicBlock::iterator IP = findInsertPointAfter(I, Builder.GetInsertBlock());
163 return ReuseOrCreateCast(I, Ty, Op, IP);
166 /// InsertBinop - Insert the specified binary operator, doing a small amount
167 /// of work to avoid inserting an obviously redundant operation, and hoisting
168 /// to an outer loop when the opportunity is there and it is safe.
169 Value *SCEVExpander::InsertBinop(Instruction::BinaryOps Opcode,
170 Value *LHS, Value *RHS,
171 SCEV::NoWrapFlags Flags, bool IsSafeToHoist) {
172 // Fold a binop with constant operands.
173 if (Constant *CLHS = dyn_cast<Constant>(LHS))
174 if (Constant *CRHS = dyn_cast<Constant>(RHS))
175 return ConstantExpr::get(Opcode, CLHS, CRHS);
177 // Do a quick scan to see if we have this binop nearby. If so, reuse it.
178 unsigned ScanLimit = 6;
179 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
180 // Scanning starts from the last instruction before the insertion point.
181 BasicBlock::iterator IP = Builder.GetInsertPoint();
182 if (IP != BlockBegin) {
183 --IP;
184 for (; ScanLimit; --IP, --ScanLimit) {
185 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
186 // generated code.
187 if (isa<DbgInfoIntrinsic>(IP))
188 ScanLimit++;
190 auto canGenerateIncompatiblePoison = [&Flags](Instruction *I) {
191 // Ensure that no-wrap flags match.
192 if (isa<OverflowingBinaryOperator>(I)) {
193 if (I->hasNoSignedWrap() != (Flags & SCEV::FlagNSW))
194 return true;
195 if (I->hasNoUnsignedWrap() != (Flags & SCEV::FlagNUW))
196 return true;
198 // Conservatively, do not use any instruction which has any of exact
199 // flags installed.
200 if (isa<PossiblyExactOperator>(I) && I->isExact())
201 return true;
202 return false;
204 if (IP->getOpcode() == (unsigned)Opcode && IP->getOperand(0) == LHS &&
205 IP->getOperand(1) == RHS && !canGenerateIncompatiblePoison(&*IP))
206 return &*IP;
207 if (IP == BlockBegin) break;
211 // Save the original insertion point so we can restore it when we're done.
212 DebugLoc Loc = Builder.GetInsertPoint()->getDebugLoc();
213 SCEVInsertPointGuard Guard(Builder, this);
215 if (IsSafeToHoist) {
216 // Move the insertion point out of as many loops as we can.
217 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
218 if (!L->isLoopInvariant(LHS) || !L->isLoopInvariant(RHS)) break;
219 BasicBlock *Preheader = L->getLoopPreheader();
220 if (!Preheader) break;
222 // Ok, move up a level.
223 Builder.SetInsertPoint(Preheader->getTerminator());
227 // If we haven't found this binop, insert it.
228 Instruction *BO = cast<Instruction>(Builder.CreateBinOp(Opcode, LHS, RHS));
229 BO->setDebugLoc(Loc);
230 if (Flags & SCEV::FlagNUW)
231 BO->setHasNoUnsignedWrap();
232 if (Flags & SCEV::FlagNSW)
233 BO->setHasNoSignedWrap();
234 rememberInstruction(BO);
236 return BO;
239 /// FactorOutConstant - Test if S is divisible by Factor, using signed
240 /// division. If so, update S with Factor divided out and return true.
241 /// S need not be evenly divisible if a reasonable remainder can be
242 /// computed.
243 static bool FactorOutConstant(const SCEV *&S, const SCEV *&Remainder,
244 const SCEV *Factor, ScalarEvolution &SE,
245 const DataLayout &DL) {
246 // Everything is divisible by one.
247 if (Factor->isOne())
248 return true;
250 // x/x == 1.
251 if (S == Factor) {
252 S = SE.getConstant(S->getType(), 1);
253 return true;
256 // For a Constant, check for a multiple of the given factor.
257 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
258 // 0/x == 0.
259 if (C->isZero())
260 return true;
261 // Check for divisibility.
262 if (const SCEVConstant *FC = dyn_cast<SCEVConstant>(Factor)) {
263 ConstantInt *CI =
264 ConstantInt::get(SE.getContext(), C->getAPInt().sdiv(FC->getAPInt()));
265 // If the quotient is zero and the remainder is non-zero, reject
266 // the value at this scale. It will be considered for subsequent
267 // smaller scales.
268 if (!CI->isZero()) {
269 const SCEV *Div = SE.getConstant(CI);
270 S = Div;
271 Remainder = SE.getAddExpr(
272 Remainder, SE.getConstant(C->getAPInt().srem(FC->getAPInt())));
273 return true;
278 // In a Mul, check if there is a constant operand which is a multiple
279 // of the given factor.
280 if (const SCEVMulExpr *M = dyn_cast<SCEVMulExpr>(S)) {
281 // Size is known, check if there is a constant operand which is a multiple
282 // of the given factor. If so, we can factor it.
283 const SCEVConstant *FC = cast<SCEVConstant>(Factor);
284 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(M->getOperand(0)))
285 if (!C->getAPInt().srem(FC->getAPInt())) {
286 SmallVector<const SCEV *, 4> NewMulOps(M->op_begin(), M->op_end());
287 NewMulOps[0] = SE.getConstant(C->getAPInt().sdiv(FC->getAPInt()));
288 S = SE.getMulExpr(NewMulOps);
289 return true;
293 // In an AddRec, check if both start and step are divisible.
294 if (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(S)) {
295 const SCEV *Step = A->getStepRecurrence(SE);
296 const SCEV *StepRem = SE.getConstant(Step->getType(), 0);
297 if (!FactorOutConstant(Step, StepRem, Factor, SE, DL))
298 return false;
299 if (!StepRem->isZero())
300 return false;
301 const SCEV *Start = A->getStart();
302 if (!FactorOutConstant(Start, Remainder, Factor, SE, DL))
303 return false;
304 S = SE.getAddRecExpr(Start, Step, A->getLoop(),
305 A->getNoWrapFlags(SCEV::FlagNW));
306 return true;
309 return false;
312 /// SimplifyAddOperands - Sort and simplify a list of add operands. NumAddRecs
313 /// is the number of SCEVAddRecExprs present, which are kept at the end of
314 /// the list.
316 static void SimplifyAddOperands(SmallVectorImpl<const SCEV *> &Ops,
317 Type *Ty,
318 ScalarEvolution &SE) {
319 unsigned NumAddRecs = 0;
320 for (unsigned i = Ops.size(); i > 0 && isa<SCEVAddRecExpr>(Ops[i-1]); --i)
321 ++NumAddRecs;
322 // Group Ops into non-addrecs and addrecs.
323 SmallVector<const SCEV *, 8> NoAddRecs(Ops.begin(), Ops.end() - NumAddRecs);
324 SmallVector<const SCEV *, 8> AddRecs(Ops.end() - NumAddRecs, Ops.end());
325 // Let ScalarEvolution sort and simplify the non-addrecs list.
326 const SCEV *Sum = NoAddRecs.empty() ?
327 SE.getConstant(Ty, 0) :
328 SE.getAddExpr(NoAddRecs);
329 // If it returned an add, use the operands. Otherwise it simplified
330 // the sum into a single value, so just use that.
331 Ops.clear();
332 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Sum))
333 Ops.append(Add->op_begin(), Add->op_end());
334 else if (!Sum->isZero())
335 Ops.push_back(Sum);
336 // Then append the addrecs.
337 Ops.append(AddRecs.begin(), AddRecs.end());
340 /// SplitAddRecs - Flatten a list of add operands, moving addrec start values
341 /// out to the top level. For example, convert {a + b,+,c} to a, b, {0,+,d}.
342 /// This helps expose more opportunities for folding parts of the expressions
343 /// into GEP indices.
345 static void SplitAddRecs(SmallVectorImpl<const SCEV *> &Ops,
346 Type *Ty,
347 ScalarEvolution &SE) {
348 // Find the addrecs.
349 SmallVector<const SCEV *, 8> AddRecs;
350 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
351 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Ops[i])) {
352 const SCEV *Start = A->getStart();
353 if (Start->isZero()) break;
354 const SCEV *Zero = SE.getConstant(Ty, 0);
355 AddRecs.push_back(SE.getAddRecExpr(Zero,
356 A->getStepRecurrence(SE),
357 A->getLoop(),
358 A->getNoWrapFlags(SCEV::FlagNW)));
359 if (const SCEVAddExpr *Add = dyn_cast<SCEVAddExpr>(Start)) {
360 Ops[i] = Zero;
361 Ops.append(Add->op_begin(), Add->op_end());
362 e += Add->getNumOperands();
363 } else {
364 Ops[i] = Start;
367 if (!AddRecs.empty()) {
368 // Add the addrecs onto the end of the list.
369 Ops.append(AddRecs.begin(), AddRecs.end());
370 // Resort the operand list, moving any constants to the front.
371 SimplifyAddOperands(Ops, Ty, SE);
375 /// expandAddToGEP - Expand an addition expression with a pointer type into
376 /// a GEP instead of using ptrtoint+arithmetic+inttoptr. This helps
377 /// BasicAliasAnalysis and other passes analyze the result. See the rules
378 /// for getelementptr vs. inttoptr in
379 /// http://llvm.org/docs/LangRef.html#pointeraliasing
380 /// for details.
382 /// Design note: The correctness of using getelementptr here depends on
383 /// ScalarEvolution not recognizing inttoptr and ptrtoint operators, as
384 /// they may introduce pointer arithmetic which may not be safely converted
385 /// into getelementptr.
387 /// Design note: It might seem desirable for this function to be more
388 /// loop-aware. If some of the indices are loop-invariant while others
389 /// aren't, it might seem desirable to emit multiple GEPs, keeping the
390 /// loop-invariant portions of the overall computation outside the loop.
391 /// However, there are a few reasons this is not done here. Hoisting simple
392 /// arithmetic is a low-level optimization that often isn't very
393 /// important until late in the optimization process. In fact, passes
394 /// like InstructionCombining will combine GEPs, even if it means
395 /// pushing loop-invariant computation down into loops, so even if the
396 /// GEPs were split here, the work would quickly be undone. The
397 /// LoopStrengthReduction pass, which is usually run quite late (and
398 /// after the last InstructionCombining pass), takes care of hoisting
399 /// loop-invariant portions of expressions, after considering what
400 /// can be folded using target addressing modes.
402 Value *SCEVExpander::expandAddToGEP(const SCEV *const *op_begin,
403 const SCEV *const *op_end,
404 PointerType *PTy,
405 Type *Ty,
406 Value *V) {
407 Type *OriginalElTy = PTy->getElementType();
408 Type *ElTy = OriginalElTy;
409 SmallVector<Value *, 4> GepIndices;
410 SmallVector<const SCEV *, 8> Ops(op_begin, op_end);
411 bool AnyNonZeroIndices = false;
413 // Split AddRecs up into parts as either of the parts may be usable
414 // without the other.
415 SplitAddRecs(Ops, Ty, SE);
417 Type *IntPtrTy = DL.getIntPtrType(PTy);
419 // Descend down the pointer's type and attempt to convert the other
420 // operands into GEP indices, at each level. The first index in a GEP
421 // indexes into the array implied by the pointer operand; the rest of
422 // the indices index into the element or field type selected by the
423 // preceding index.
424 for (;;) {
425 // If the scale size is not 0, attempt to factor out a scale for
426 // array indexing.
427 SmallVector<const SCEV *, 8> ScaledOps;
428 if (ElTy->isSized()) {
429 const SCEV *ElSize = SE.getSizeOfExpr(IntPtrTy, ElTy);
430 if (!ElSize->isZero()) {
431 SmallVector<const SCEV *, 8> NewOps;
432 for (const SCEV *Op : Ops) {
433 const SCEV *Remainder = SE.getConstant(Ty, 0);
434 if (FactorOutConstant(Op, Remainder, ElSize, SE, DL)) {
435 // Op now has ElSize factored out.
436 ScaledOps.push_back(Op);
437 if (!Remainder->isZero())
438 NewOps.push_back(Remainder);
439 AnyNonZeroIndices = true;
440 } else {
441 // The operand was not divisible, so add it to the list of operands
442 // we'll scan next iteration.
443 NewOps.push_back(Op);
446 // If we made any changes, update Ops.
447 if (!ScaledOps.empty()) {
448 Ops = NewOps;
449 SimplifyAddOperands(Ops, Ty, SE);
454 // Record the scaled array index for this level of the type. If
455 // we didn't find any operands that could be factored, tentatively
456 // assume that element zero was selected (since the zero offset
457 // would obviously be folded away).
458 Value *Scaled = ScaledOps.empty() ?
459 Constant::getNullValue(Ty) :
460 expandCodeFor(SE.getAddExpr(ScaledOps), Ty);
461 GepIndices.push_back(Scaled);
463 // Collect struct field index operands.
464 while (StructType *STy = dyn_cast<StructType>(ElTy)) {
465 bool FoundFieldNo = false;
466 // An empty struct has no fields.
467 if (STy->getNumElements() == 0) break;
468 // Field offsets are known. See if a constant offset falls within any of
469 // the struct fields.
470 if (Ops.empty())
471 break;
472 if (const SCEVConstant *C = dyn_cast<SCEVConstant>(Ops[0]))
473 if (SE.getTypeSizeInBits(C->getType()) <= 64) {
474 const StructLayout &SL = *DL.getStructLayout(STy);
475 uint64_t FullOffset = C->getValue()->getZExtValue();
476 if (FullOffset < SL.getSizeInBytes()) {
477 unsigned ElIdx = SL.getElementContainingOffset(FullOffset);
478 GepIndices.push_back(
479 ConstantInt::get(Type::getInt32Ty(Ty->getContext()), ElIdx));
480 ElTy = STy->getTypeAtIndex(ElIdx);
481 Ops[0] =
482 SE.getConstant(Ty, FullOffset - SL.getElementOffset(ElIdx));
483 AnyNonZeroIndices = true;
484 FoundFieldNo = true;
487 // If no struct field offsets were found, tentatively assume that
488 // field zero was selected (since the zero offset would obviously
489 // be folded away).
490 if (!FoundFieldNo) {
491 ElTy = STy->getTypeAtIndex(0u);
492 GepIndices.push_back(
493 Constant::getNullValue(Type::getInt32Ty(Ty->getContext())));
497 if (ArrayType *ATy = dyn_cast<ArrayType>(ElTy))
498 ElTy = ATy->getElementType();
499 else
500 break;
503 // If none of the operands were convertible to proper GEP indices, cast
504 // the base to i8* and do an ugly getelementptr with that. It's still
505 // better than ptrtoint+arithmetic+inttoptr at least.
506 if (!AnyNonZeroIndices) {
507 // Cast the base to i8*.
508 V = InsertNoopCastOfTo(V,
509 Type::getInt8PtrTy(Ty->getContext(), PTy->getAddressSpace()));
511 assert(!isa<Instruction>(V) ||
512 SE.DT.dominates(cast<Instruction>(V), &*Builder.GetInsertPoint()));
514 // Expand the operands for a plain byte offset.
515 Value *Idx = expandCodeFor(SE.getAddExpr(Ops), Ty);
517 // Fold a GEP with constant operands.
518 if (Constant *CLHS = dyn_cast<Constant>(V))
519 if (Constant *CRHS = dyn_cast<Constant>(Idx))
520 return ConstantExpr::getGetElementPtr(Type::getInt8Ty(Ty->getContext()),
521 CLHS, CRHS);
523 // Do a quick scan to see if we have this GEP nearby. If so, reuse it.
524 unsigned ScanLimit = 6;
525 BasicBlock::iterator BlockBegin = Builder.GetInsertBlock()->begin();
526 // Scanning starts from the last instruction before the insertion point.
527 BasicBlock::iterator IP = Builder.GetInsertPoint();
528 if (IP != BlockBegin) {
529 --IP;
530 for (; ScanLimit; --IP, --ScanLimit) {
531 // Don't count dbg.value against the ScanLimit, to avoid perturbing the
532 // generated code.
533 if (isa<DbgInfoIntrinsic>(IP))
534 ScanLimit++;
535 if (IP->getOpcode() == Instruction::GetElementPtr &&
536 IP->getOperand(0) == V && IP->getOperand(1) == Idx)
537 return &*IP;
538 if (IP == BlockBegin) break;
542 // Save the original insertion point so we can restore it when we're done.
543 SCEVInsertPointGuard Guard(Builder, this);
545 // Move the insertion point out of as many loops as we can.
546 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
547 if (!L->isLoopInvariant(V) || !L->isLoopInvariant(Idx)) break;
548 BasicBlock *Preheader = L->getLoopPreheader();
549 if (!Preheader) break;
551 // Ok, move up a level.
552 Builder.SetInsertPoint(Preheader->getTerminator());
555 // Emit a GEP.
556 Value *GEP = Builder.CreateGEP(Builder.getInt8Ty(), V, Idx, "uglygep");
557 rememberInstruction(GEP);
559 return GEP;
563 SCEVInsertPointGuard Guard(Builder, this);
565 // Move the insertion point out of as many loops as we can.
566 while (const Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock())) {
567 if (!L->isLoopInvariant(V)) break;
569 bool AnyIndexNotLoopInvariant = any_of(
570 GepIndices, [L](Value *Op) { return !L->isLoopInvariant(Op); });
572 if (AnyIndexNotLoopInvariant)
573 break;
575 BasicBlock *Preheader = L->getLoopPreheader();
576 if (!Preheader) break;
578 // Ok, move up a level.
579 Builder.SetInsertPoint(Preheader->getTerminator());
582 // Insert a pretty getelementptr. Note that this GEP is not marked inbounds,
583 // because ScalarEvolution may have changed the address arithmetic to
584 // compute a value which is beyond the end of the allocated object.
585 Value *Casted = V;
586 if (V->getType() != PTy)
587 Casted = InsertNoopCastOfTo(Casted, PTy);
588 Value *GEP = Builder.CreateGEP(OriginalElTy, Casted, GepIndices, "scevgep");
589 Ops.push_back(SE.getUnknown(GEP));
590 rememberInstruction(GEP);
593 return expand(SE.getAddExpr(Ops));
596 Value *SCEVExpander::expandAddToGEP(const SCEV *Op, PointerType *PTy, Type *Ty,
597 Value *V) {
598 const SCEV *const Ops[1] = {Op};
599 return expandAddToGEP(Ops, Ops + 1, PTy, Ty, V);
602 /// PickMostRelevantLoop - Given two loops pick the one that's most relevant for
603 /// SCEV expansion. If they are nested, this is the most nested. If they are
604 /// neighboring, pick the later.
605 static const Loop *PickMostRelevantLoop(const Loop *A, const Loop *B,
606 DominatorTree &DT) {
607 if (!A) return B;
608 if (!B) return A;
609 if (A->contains(B)) return B;
610 if (B->contains(A)) return A;
611 if (DT.dominates(A->getHeader(), B->getHeader())) return B;
612 if (DT.dominates(B->getHeader(), A->getHeader())) return A;
613 return A; // Arbitrarily break the tie.
616 /// getRelevantLoop - Get the most relevant loop associated with the given
617 /// expression, according to PickMostRelevantLoop.
618 const Loop *SCEVExpander::getRelevantLoop(const SCEV *S) {
619 // Test whether we've already computed the most relevant loop for this SCEV.
620 auto Pair = RelevantLoops.insert(std::make_pair(S, nullptr));
621 if (!Pair.second)
622 return Pair.first->second;
624 if (isa<SCEVConstant>(S))
625 // A constant has no relevant loops.
626 return nullptr;
627 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
628 if (const Instruction *I = dyn_cast<Instruction>(U->getValue()))
629 return Pair.first->second = SE.LI.getLoopFor(I->getParent());
630 // A non-instruction has no relevant loops.
631 return nullptr;
633 if (const SCEVNAryExpr *N = dyn_cast<SCEVNAryExpr>(S)) {
634 const Loop *L = nullptr;
635 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S))
636 L = AR->getLoop();
637 for (const SCEV *Op : N->operands())
638 L = PickMostRelevantLoop(L, getRelevantLoop(Op), SE.DT);
639 return RelevantLoops[N] = L;
641 if (const SCEVCastExpr *C = dyn_cast<SCEVCastExpr>(S)) {
642 const Loop *Result = getRelevantLoop(C->getOperand());
643 return RelevantLoops[C] = Result;
645 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
646 const Loop *Result = PickMostRelevantLoop(
647 getRelevantLoop(D->getLHS()), getRelevantLoop(D->getRHS()), SE.DT);
648 return RelevantLoops[D] = Result;
650 llvm_unreachable("Unexpected SCEV type!");
653 namespace {
655 /// LoopCompare - Compare loops by PickMostRelevantLoop.
656 class LoopCompare {
657 DominatorTree &DT;
658 public:
659 explicit LoopCompare(DominatorTree &dt) : DT(dt) {}
661 bool operator()(std::pair<const Loop *, const SCEV *> LHS,
662 std::pair<const Loop *, const SCEV *> RHS) const {
663 // Keep pointer operands sorted at the end.
664 if (LHS.second->getType()->isPointerTy() !=
665 RHS.second->getType()->isPointerTy())
666 return LHS.second->getType()->isPointerTy();
668 // Compare loops with PickMostRelevantLoop.
669 if (LHS.first != RHS.first)
670 return PickMostRelevantLoop(LHS.first, RHS.first, DT) != LHS.first;
672 // If one operand is a non-constant negative and the other is not,
673 // put the non-constant negative on the right so that a sub can
674 // be used instead of a negate and add.
675 if (LHS.second->isNonConstantNegative()) {
676 if (!RHS.second->isNonConstantNegative())
677 return false;
678 } else if (RHS.second->isNonConstantNegative())
679 return true;
681 // Otherwise they are equivalent according to this comparison.
682 return false;
688 Value *SCEVExpander::visitAddExpr(const SCEVAddExpr *S) {
689 Type *Ty = SE.getEffectiveSCEVType(S->getType());
691 // Collect all the add operands in a loop, along with their associated loops.
692 // Iterate in reverse so that constants are emitted last, all else equal, and
693 // so that pointer operands are inserted first, which the code below relies on
694 // to form more involved GEPs.
695 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
696 for (std::reverse_iterator<SCEVAddExpr::op_iterator> I(S->op_end()),
697 E(S->op_begin()); I != E; ++I)
698 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
700 // Sort by loop. Use a stable sort so that constants follow non-constants and
701 // pointer operands precede non-pointer operands.
702 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
704 // Emit instructions to add all the operands. Hoist as much as possible
705 // out of loops, and form meaningful getelementptrs where possible.
706 Value *Sum = nullptr;
707 for (auto I = OpsAndLoops.begin(), E = OpsAndLoops.end(); I != E;) {
708 const Loop *CurLoop = I->first;
709 const SCEV *Op = I->second;
710 if (!Sum) {
711 // This is the first operand. Just expand it.
712 Sum = expand(Op);
713 ++I;
714 } else if (PointerType *PTy = dyn_cast<PointerType>(Sum->getType())) {
715 // The running sum expression is a pointer. Try to form a getelementptr
716 // at this level with that as the base.
717 SmallVector<const SCEV *, 4> NewOps;
718 for (; I != E && I->first == CurLoop; ++I) {
719 // If the operand is SCEVUnknown and not instructions, peek through
720 // it, to enable more of it to be folded into the GEP.
721 const SCEV *X = I->second;
722 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(X))
723 if (!isa<Instruction>(U->getValue()))
724 X = SE.getSCEV(U->getValue());
725 NewOps.push_back(X);
727 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, Sum);
728 } else if (PointerType *PTy = dyn_cast<PointerType>(Op->getType())) {
729 // The running sum is an integer, and there's a pointer at this level.
730 // Try to form a getelementptr. If the running sum is instructions,
731 // use a SCEVUnknown to avoid re-analyzing them.
732 SmallVector<const SCEV *, 4> NewOps;
733 NewOps.push_back(isa<Instruction>(Sum) ? SE.getUnknown(Sum) :
734 SE.getSCEV(Sum));
735 for (++I; I != E && I->first == CurLoop; ++I)
736 NewOps.push_back(I->second);
737 Sum = expandAddToGEP(NewOps.begin(), NewOps.end(), PTy, Ty, expand(Op));
738 } else if (Op->isNonConstantNegative()) {
739 // Instead of doing a negate and add, just do a subtract.
740 Value *W = expandCodeFor(SE.getNegativeSCEV(Op), Ty);
741 Sum = InsertNoopCastOfTo(Sum, Ty);
742 Sum = InsertBinop(Instruction::Sub, Sum, W, SCEV::FlagAnyWrap,
743 /*IsSafeToHoist*/ true);
744 ++I;
745 } else {
746 // A simple add.
747 Value *W = expandCodeFor(Op, Ty);
748 Sum = InsertNoopCastOfTo(Sum, Ty);
749 // Canonicalize a constant to the RHS.
750 if (isa<Constant>(Sum)) std::swap(Sum, W);
751 Sum = InsertBinop(Instruction::Add, Sum, W, S->getNoWrapFlags(),
752 /*IsSafeToHoist*/ true);
753 ++I;
757 return Sum;
760 Value *SCEVExpander::visitMulExpr(const SCEVMulExpr *S) {
761 Type *Ty = SE.getEffectiveSCEVType(S->getType());
763 // Collect all the mul operands in a loop, along with their associated loops.
764 // Iterate in reverse so that constants are emitted last, all else equal.
765 SmallVector<std::pair<const Loop *, const SCEV *>, 8> OpsAndLoops;
766 for (std::reverse_iterator<SCEVMulExpr::op_iterator> I(S->op_end()),
767 E(S->op_begin()); I != E; ++I)
768 OpsAndLoops.push_back(std::make_pair(getRelevantLoop(*I), *I));
770 // Sort by loop. Use a stable sort so that constants follow non-constants.
771 llvm::stable_sort(OpsAndLoops, LoopCompare(SE.DT));
773 // Emit instructions to mul all the operands. Hoist as much as possible
774 // out of loops.
775 Value *Prod = nullptr;
776 auto I = OpsAndLoops.begin();
778 // Expand the calculation of X pow N in the following manner:
779 // Let N = P1 + P2 + ... + PK, where all P are powers of 2. Then:
780 // X pow N = (X pow P1) * (X pow P2) * ... * (X pow PK).
781 const auto ExpandOpBinPowN = [this, &I, &OpsAndLoops, &Ty]() {
782 auto E = I;
783 // Calculate how many times the same operand from the same loop is included
784 // into this power.
785 uint64_t Exponent = 0;
786 const uint64_t MaxExponent = UINT64_MAX >> 1;
787 // No one sane will ever try to calculate such huge exponents, but if we
788 // need this, we stop on UINT64_MAX / 2 because we need to exit the loop
789 // below when the power of 2 exceeds our Exponent, and we want it to be
790 // 1u << 31 at most to not deal with unsigned overflow.
791 while (E != OpsAndLoops.end() && *I == *E && Exponent != MaxExponent) {
792 ++Exponent;
793 ++E;
795 assert(Exponent > 0 && "Trying to calculate a zeroth exponent of operand?");
797 // Calculate powers with exponents 1, 2, 4, 8 etc. and include those of them
798 // that are needed into the result.
799 Value *P = expandCodeFor(I->second, Ty);
800 Value *Result = nullptr;
801 if (Exponent & 1)
802 Result = P;
803 for (uint64_t BinExp = 2; BinExp <= Exponent; BinExp <<= 1) {
804 P = InsertBinop(Instruction::Mul, P, P, SCEV::FlagAnyWrap,
805 /*IsSafeToHoist*/ true);
806 if (Exponent & BinExp)
807 Result = Result ? InsertBinop(Instruction::Mul, Result, P,
808 SCEV::FlagAnyWrap,
809 /*IsSafeToHoist*/ true)
810 : P;
813 I = E;
814 assert(Result && "Nothing was expanded?");
815 return Result;
818 while (I != OpsAndLoops.end()) {
819 if (!Prod) {
820 // This is the first operand. Just expand it.
821 Prod = ExpandOpBinPowN();
822 } else if (I->second->isAllOnesValue()) {
823 // Instead of doing a multiply by negative one, just do a negate.
824 Prod = InsertNoopCastOfTo(Prod, Ty);
825 Prod = InsertBinop(Instruction::Sub, Constant::getNullValue(Ty), Prod,
826 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
827 ++I;
828 } else {
829 // A simple mul.
830 Value *W = ExpandOpBinPowN();
831 Prod = InsertNoopCastOfTo(Prod, Ty);
832 // Canonicalize a constant to the RHS.
833 if (isa<Constant>(Prod)) std::swap(Prod, W);
834 const APInt *RHS;
835 if (match(W, m_Power2(RHS))) {
836 // Canonicalize Prod*(1<<C) to Prod<<C.
837 assert(!Ty->isVectorTy() && "vector types are not SCEVable");
838 auto NWFlags = S->getNoWrapFlags();
839 // clear nsw flag if shl will produce poison value.
840 if (RHS->logBase2() == RHS->getBitWidth() - 1)
841 NWFlags = ScalarEvolution::clearFlags(NWFlags, SCEV::FlagNSW);
842 Prod = InsertBinop(Instruction::Shl, Prod,
843 ConstantInt::get(Ty, RHS->logBase2()), NWFlags,
844 /*IsSafeToHoist*/ true);
845 } else {
846 Prod = InsertBinop(Instruction::Mul, Prod, W, S->getNoWrapFlags(),
847 /*IsSafeToHoist*/ true);
852 return Prod;
855 Value *SCEVExpander::visitUDivExpr(const SCEVUDivExpr *S) {
856 Type *Ty = SE.getEffectiveSCEVType(S->getType());
858 Value *LHS = expandCodeFor(S->getLHS(), Ty);
859 if (const SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getRHS())) {
860 const APInt &RHS = SC->getAPInt();
861 if (RHS.isPowerOf2())
862 return InsertBinop(Instruction::LShr, LHS,
863 ConstantInt::get(Ty, RHS.logBase2()),
864 SCEV::FlagAnyWrap, /*IsSafeToHoist*/ true);
867 Value *RHS = expandCodeFor(S->getRHS(), Ty);
868 return InsertBinop(Instruction::UDiv, LHS, RHS, SCEV::FlagAnyWrap,
869 /*IsSafeToHoist*/ SE.isKnownNonZero(S->getRHS()));
872 /// Move parts of Base into Rest to leave Base with the minimal
873 /// expression that provides a pointer operand suitable for a
874 /// GEP expansion.
875 static void ExposePointerBase(const SCEV *&Base, const SCEV *&Rest,
876 ScalarEvolution &SE) {
877 while (const SCEVAddRecExpr *A = dyn_cast<SCEVAddRecExpr>(Base)) {
878 Base = A->getStart();
879 Rest = SE.getAddExpr(Rest,
880 SE.getAddRecExpr(SE.getConstant(A->getType(), 0),
881 A->getStepRecurrence(SE),
882 A->getLoop(),
883 A->getNoWrapFlags(SCEV::FlagNW)));
885 if (const SCEVAddExpr *A = dyn_cast<SCEVAddExpr>(Base)) {
886 Base = A->getOperand(A->getNumOperands()-1);
887 SmallVector<const SCEV *, 8> NewAddOps(A->op_begin(), A->op_end());
888 NewAddOps.back() = Rest;
889 Rest = SE.getAddExpr(NewAddOps);
890 ExposePointerBase(Base, Rest, SE);
894 /// Determine if this is a well-behaved chain of instructions leading back to
895 /// the PHI. If so, it may be reused by expanded expressions.
896 bool SCEVExpander::isNormalAddRecExprPHI(PHINode *PN, Instruction *IncV,
897 const Loop *L) {
898 if (IncV->getNumOperands() == 0 || isa<PHINode>(IncV) ||
899 (isa<CastInst>(IncV) && !isa<BitCastInst>(IncV)))
900 return false;
901 // If any of the operands don't dominate the insert position, bail.
902 // Addrec operands are always loop-invariant, so this can only happen
903 // if there are instructions which haven't been hoisted.
904 if (L == IVIncInsertLoop) {
905 for (User::op_iterator OI = IncV->op_begin()+1,
906 OE = IncV->op_end(); OI != OE; ++OI)
907 if (Instruction *OInst = dyn_cast<Instruction>(OI))
908 if (!SE.DT.dominates(OInst, IVIncInsertPos))
909 return false;
911 // Advance to the next instruction.
912 IncV = dyn_cast<Instruction>(IncV->getOperand(0));
913 if (!IncV)
914 return false;
916 if (IncV->mayHaveSideEffects())
917 return false;
919 if (IncV == PN)
920 return true;
922 return isNormalAddRecExprPHI(PN, IncV, L);
925 /// getIVIncOperand returns an induction variable increment's induction
926 /// variable operand.
928 /// If allowScale is set, any type of GEP is allowed as long as the nonIV
929 /// operands dominate InsertPos.
931 /// If allowScale is not set, ensure that a GEP increment conforms to one of the
932 /// simple patterns generated by getAddRecExprPHILiterally and
933 /// expandAddtoGEP. If the pattern isn't recognized, return NULL.
934 Instruction *SCEVExpander::getIVIncOperand(Instruction *IncV,
935 Instruction *InsertPos,
936 bool allowScale) {
937 if (IncV == InsertPos)
938 return nullptr;
940 switch (IncV->getOpcode()) {
941 default:
942 return nullptr;
943 // Check for a simple Add/Sub or GEP of a loop invariant step.
944 case Instruction::Add:
945 case Instruction::Sub: {
946 Instruction *OInst = dyn_cast<Instruction>(IncV->getOperand(1));
947 if (!OInst || SE.DT.dominates(OInst, InsertPos))
948 return dyn_cast<Instruction>(IncV->getOperand(0));
949 return nullptr;
951 case Instruction::BitCast:
952 return dyn_cast<Instruction>(IncV->getOperand(0));
953 case Instruction::GetElementPtr:
954 for (auto I = IncV->op_begin() + 1, E = IncV->op_end(); I != E; ++I) {
955 if (isa<Constant>(*I))
956 continue;
957 if (Instruction *OInst = dyn_cast<Instruction>(*I)) {
958 if (!SE.DT.dominates(OInst, InsertPos))
959 return nullptr;
961 if (allowScale) {
962 // allow any kind of GEP as long as it can be hoisted.
963 continue;
965 // This must be a pointer addition of constants (pretty), which is already
966 // handled, or some number of address-size elements (ugly). Ugly geps
967 // have 2 operands. i1* is used by the expander to represent an
968 // address-size element.
969 if (IncV->getNumOperands() != 2)
970 return nullptr;
971 unsigned AS = cast<PointerType>(IncV->getType())->getAddressSpace();
972 if (IncV->getType() != Type::getInt1PtrTy(SE.getContext(), AS)
973 && IncV->getType() != Type::getInt8PtrTy(SE.getContext(), AS))
974 return nullptr;
975 break;
977 return dyn_cast<Instruction>(IncV->getOperand(0));
981 /// If the insert point of the current builder or any of the builders on the
982 /// stack of saved builders has 'I' as its insert point, update it to point to
983 /// the instruction after 'I'. This is intended to be used when the instruction
984 /// 'I' is being moved. If this fixup is not done and 'I' is moved to a
985 /// different block, the inconsistent insert point (with a mismatched
986 /// Instruction and Block) can lead to an instruction being inserted in a block
987 /// other than its parent.
988 void SCEVExpander::fixupInsertPoints(Instruction *I) {
989 BasicBlock::iterator It(*I);
990 BasicBlock::iterator NewInsertPt = std::next(It);
991 if (Builder.GetInsertPoint() == It)
992 Builder.SetInsertPoint(&*NewInsertPt);
993 for (auto *InsertPtGuard : InsertPointGuards)
994 if (InsertPtGuard->GetInsertPoint() == It)
995 InsertPtGuard->SetInsertPoint(NewInsertPt);
998 /// hoistStep - Attempt to hoist a simple IV increment above InsertPos to make
999 /// it available to other uses in this loop. Recursively hoist any operands,
1000 /// until we reach a value that dominates InsertPos.
1001 bool SCEVExpander::hoistIVInc(Instruction *IncV, Instruction *InsertPos) {
1002 if (SE.DT.dominates(IncV, InsertPos))
1003 return true;
1005 // InsertPos must itself dominate IncV so that IncV's new position satisfies
1006 // its existing users.
1007 if (isa<PHINode>(InsertPos) ||
1008 !SE.DT.dominates(InsertPos->getParent(), IncV->getParent()))
1009 return false;
1011 if (!SE.LI.movementPreservesLCSSAForm(IncV, InsertPos))
1012 return false;
1014 // Check that the chain of IV operands leading back to Phi can be hoisted.
1015 SmallVector<Instruction*, 4> IVIncs;
1016 for(;;) {
1017 Instruction *Oper = getIVIncOperand(IncV, InsertPos, /*allowScale*/true);
1018 if (!Oper)
1019 return false;
1020 // IncV is safe to hoist.
1021 IVIncs.push_back(IncV);
1022 IncV = Oper;
1023 if (SE.DT.dominates(IncV, InsertPos))
1024 break;
1026 for (auto I = IVIncs.rbegin(), E = IVIncs.rend(); I != E; ++I) {
1027 fixupInsertPoints(*I);
1028 (*I)->moveBefore(InsertPos);
1030 return true;
1033 /// Determine if this cyclic phi is in a form that would have been generated by
1034 /// LSR. We don't care if the phi was actually expanded in this pass, as long
1035 /// as it is in a low-cost form, for example, no implied multiplication. This
1036 /// should match any patterns generated by getAddRecExprPHILiterally and
1037 /// expandAddtoGEP.
1038 bool SCEVExpander::isExpandedAddRecExprPHI(PHINode *PN, Instruction *IncV,
1039 const Loop *L) {
1040 for(Instruction *IVOper = IncV;
1041 (IVOper = getIVIncOperand(IVOper, L->getLoopPreheader()->getTerminator(),
1042 /*allowScale=*/false));) {
1043 if (IVOper == PN)
1044 return true;
1046 return false;
1049 /// expandIVInc - Expand an IV increment at Builder's current InsertPos.
1050 /// Typically this is the LatchBlock terminator or IVIncInsertPos, but we may
1051 /// need to materialize IV increments elsewhere to handle difficult situations.
1052 Value *SCEVExpander::expandIVInc(PHINode *PN, Value *StepV, const Loop *L,
1053 Type *ExpandTy, Type *IntTy,
1054 bool useSubtract) {
1055 Value *IncV;
1056 // If the PHI is a pointer, use a GEP, otherwise use an add or sub.
1057 if (ExpandTy->isPointerTy()) {
1058 PointerType *GEPPtrTy = cast<PointerType>(ExpandTy);
1059 // If the step isn't constant, don't use an implicitly scaled GEP, because
1060 // that would require a multiply inside the loop.
1061 if (!isa<ConstantInt>(StepV))
1062 GEPPtrTy = PointerType::get(Type::getInt1Ty(SE.getContext()),
1063 GEPPtrTy->getAddressSpace());
1064 IncV = expandAddToGEP(SE.getSCEV(StepV), GEPPtrTy, IntTy, PN);
1065 if (IncV->getType() != PN->getType()) {
1066 IncV = Builder.CreateBitCast(IncV, PN->getType());
1067 rememberInstruction(IncV);
1069 } else {
1070 IncV = useSubtract ?
1071 Builder.CreateSub(PN, StepV, Twine(IVName) + ".iv.next") :
1072 Builder.CreateAdd(PN, StepV, Twine(IVName) + ".iv.next");
1073 rememberInstruction(IncV);
1075 return IncV;
1078 /// Hoist the addrec instruction chain rooted in the loop phi above the
1079 /// position. This routine assumes that this is possible (has been checked).
1080 void SCEVExpander::hoistBeforePos(DominatorTree *DT, Instruction *InstToHoist,
1081 Instruction *Pos, PHINode *LoopPhi) {
1082 do {
1083 if (DT->dominates(InstToHoist, Pos))
1084 break;
1085 // Make sure the increment is where we want it. But don't move it
1086 // down past a potential existing post-inc user.
1087 fixupInsertPoints(InstToHoist);
1088 InstToHoist->moveBefore(Pos);
1089 Pos = InstToHoist;
1090 InstToHoist = cast<Instruction>(InstToHoist->getOperand(0));
1091 } while (InstToHoist != LoopPhi);
1094 /// Check whether we can cheaply express the requested SCEV in terms of
1095 /// the available PHI SCEV by truncation and/or inversion of the step.
1096 static bool canBeCheaplyTransformed(ScalarEvolution &SE,
1097 const SCEVAddRecExpr *Phi,
1098 const SCEVAddRecExpr *Requested,
1099 bool &InvertStep) {
1100 Type *PhiTy = SE.getEffectiveSCEVType(Phi->getType());
1101 Type *RequestedTy = SE.getEffectiveSCEVType(Requested->getType());
1103 if (RequestedTy->getIntegerBitWidth() > PhiTy->getIntegerBitWidth())
1104 return false;
1106 // Try truncate it if necessary.
1107 Phi = dyn_cast<SCEVAddRecExpr>(SE.getTruncateOrNoop(Phi, RequestedTy));
1108 if (!Phi)
1109 return false;
1111 // Check whether truncation will help.
1112 if (Phi == Requested) {
1113 InvertStep = false;
1114 return true;
1117 // Check whether inverting will help: {R,+,-1} == R - {0,+,1}.
1118 if (SE.getAddExpr(Requested->getStart(),
1119 SE.getNegativeSCEV(Requested)) == Phi) {
1120 InvertStep = true;
1121 return true;
1124 return false;
1127 static bool IsIncrementNSW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1128 if (!isa<IntegerType>(AR->getType()))
1129 return false;
1131 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1132 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1133 const SCEV *Step = AR->getStepRecurrence(SE);
1134 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getSignExtendExpr(Step, WideTy),
1135 SE.getSignExtendExpr(AR, WideTy));
1136 const SCEV *ExtendAfterOp =
1137 SE.getSignExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1138 return ExtendAfterOp == OpAfterExtend;
1141 static bool IsIncrementNUW(ScalarEvolution &SE, const SCEVAddRecExpr *AR) {
1142 if (!isa<IntegerType>(AR->getType()))
1143 return false;
1145 unsigned BitWidth = cast<IntegerType>(AR->getType())->getBitWidth();
1146 Type *WideTy = IntegerType::get(AR->getType()->getContext(), BitWidth * 2);
1147 const SCEV *Step = AR->getStepRecurrence(SE);
1148 const SCEV *OpAfterExtend = SE.getAddExpr(SE.getZeroExtendExpr(Step, WideTy),
1149 SE.getZeroExtendExpr(AR, WideTy));
1150 const SCEV *ExtendAfterOp =
1151 SE.getZeroExtendExpr(SE.getAddExpr(AR, Step), WideTy);
1152 return ExtendAfterOp == OpAfterExtend;
1155 /// getAddRecExprPHILiterally - Helper for expandAddRecExprLiterally. Expand
1156 /// the base addrec, which is the addrec without any non-loop-dominating
1157 /// values, and return the PHI.
1158 PHINode *
1159 SCEVExpander::getAddRecExprPHILiterally(const SCEVAddRecExpr *Normalized,
1160 const Loop *L,
1161 Type *ExpandTy,
1162 Type *IntTy,
1163 Type *&TruncTy,
1164 bool &InvertStep) {
1165 assert((!IVIncInsertLoop||IVIncInsertPos) && "Uninitialized insert position");
1167 // Reuse a previously-inserted PHI, if present.
1168 BasicBlock *LatchBlock = L->getLoopLatch();
1169 if (LatchBlock) {
1170 PHINode *AddRecPhiMatch = nullptr;
1171 Instruction *IncV = nullptr;
1172 TruncTy = nullptr;
1173 InvertStep = false;
1175 // Only try partially matching scevs that need truncation and/or
1176 // step-inversion if we know this loop is outside the current loop.
1177 bool TryNonMatchingSCEV =
1178 IVIncInsertLoop &&
1179 SE.DT.properlyDominates(LatchBlock, IVIncInsertLoop->getHeader());
1181 for (PHINode &PN : L->getHeader()->phis()) {
1182 if (!SE.isSCEVable(PN.getType()))
1183 continue;
1185 const SCEVAddRecExpr *PhiSCEV = dyn_cast<SCEVAddRecExpr>(SE.getSCEV(&PN));
1186 if (!PhiSCEV)
1187 continue;
1189 bool IsMatchingSCEV = PhiSCEV == Normalized;
1190 // We only handle truncation and inversion of phi recurrences for the
1191 // expanded expression if the expanded expression's loop dominates the
1192 // loop we insert to. Check now, so we can bail out early.
1193 if (!IsMatchingSCEV && !TryNonMatchingSCEV)
1194 continue;
1196 // TODO: this possibly can be reworked to avoid this cast at all.
1197 Instruction *TempIncV =
1198 dyn_cast<Instruction>(PN.getIncomingValueForBlock(LatchBlock));
1199 if (!TempIncV)
1200 continue;
1202 // Check whether we can reuse this PHI node.
1203 if (LSRMode) {
1204 if (!isExpandedAddRecExprPHI(&PN, TempIncV, L))
1205 continue;
1206 if (L == IVIncInsertLoop && !hoistIVInc(TempIncV, IVIncInsertPos))
1207 continue;
1208 } else {
1209 if (!isNormalAddRecExprPHI(&PN, TempIncV, L))
1210 continue;
1213 // Stop if we have found an exact match SCEV.
1214 if (IsMatchingSCEV) {
1215 IncV = TempIncV;
1216 TruncTy = nullptr;
1217 InvertStep = false;
1218 AddRecPhiMatch = &PN;
1219 break;
1222 // Try whether the phi can be translated into the requested form
1223 // (truncated and/or offset by a constant).
1224 if ((!TruncTy || InvertStep) &&
1225 canBeCheaplyTransformed(SE, PhiSCEV, Normalized, InvertStep)) {
1226 // Record the phi node. But don't stop we might find an exact match
1227 // later.
1228 AddRecPhiMatch = &PN;
1229 IncV = TempIncV;
1230 TruncTy = SE.getEffectiveSCEVType(Normalized->getType());
1234 if (AddRecPhiMatch) {
1235 // Potentially, move the increment. We have made sure in
1236 // isExpandedAddRecExprPHI or hoistIVInc that this is possible.
1237 if (L == IVIncInsertLoop)
1238 hoistBeforePos(&SE.DT, IncV, IVIncInsertPos, AddRecPhiMatch);
1240 // Ok, the add recurrence looks usable.
1241 // Remember this PHI, even in post-inc mode.
1242 InsertedValues.insert(AddRecPhiMatch);
1243 // Remember the increment.
1244 rememberInstruction(IncV);
1245 return AddRecPhiMatch;
1249 // Save the original insertion point so we can restore it when we're done.
1250 SCEVInsertPointGuard Guard(Builder, this);
1252 // Another AddRec may need to be recursively expanded below. For example, if
1253 // this AddRec is quadratic, the StepV may itself be an AddRec in this
1254 // loop. Remove this loop from the PostIncLoops set before expanding such
1255 // AddRecs. Otherwise, we cannot find a valid position for the step
1256 // (i.e. StepV can never dominate its loop header). Ideally, we could do
1257 // SavedIncLoops.swap(PostIncLoops), but we generally have a single element,
1258 // so it's not worth implementing SmallPtrSet::swap.
1259 PostIncLoopSet SavedPostIncLoops = PostIncLoops;
1260 PostIncLoops.clear();
1262 // Expand code for the start value into the loop preheader.
1263 assert(L->getLoopPreheader() &&
1264 "Can't expand add recurrences without a loop preheader!");
1265 Value *StartV = expandCodeFor(Normalized->getStart(), ExpandTy,
1266 L->getLoopPreheader()->getTerminator());
1268 // StartV must have been be inserted into L's preheader to dominate the new
1269 // phi.
1270 assert(!isa<Instruction>(StartV) ||
1271 SE.DT.properlyDominates(cast<Instruction>(StartV)->getParent(),
1272 L->getHeader()));
1274 // Expand code for the step value. Do this before creating the PHI so that PHI
1275 // reuse code doesn't see an incomplete PHI.
1276 const SCEV *Step = Normalized->getStepRecurrence(SE);
1277 // If the stride is negative, insert a sub instead of an add for the increment
1278 // (unless it's a constant, because subtracts of constants are canonicalized
1279 // to adds).
1280 bool useSubtract = !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1281 if (useSubtract)
1282 Step = SE.getNegativeSCEV(Step);
1283 // Expand the step somewhere that dominates the loop header.
1284 Value *StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1286 // The no-wrap behavior proved by IsIncrement(NUW|NSW) is only applicable if
1287 // we actually do emit an addition. It does not apply if we emit a
1288 // subtraction.
1289 bool IncrementIsNUW = !useSubtract && IsIncrementNUW(SE, Normalized);
1290 bool IncrementIsNSW = !useSubtract && IsIncrementNSW(SE, Normalized);
1292 // Create the PHI.
1293 BasicBlock *Header = L->getHeader();
1294 Builder.SetInsertPoint(Header, Header->begin());
1295 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1296 PHINode *PN = Builder.CreatePHI(ExpandTy, std::distance(HPB, HPE),
1297 Twine(IVName) + ".iv");
1298 rememberInstruction(PN);
1300 // Create the step instructions and populate the PHI.
1301 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1302 BasicBlock *Pred = *HPI;
1304 // Add a start value.
1305 if (!L->contains(Pred)) {
1306 PN->addIncoming(StartV, Pred);
1307 continue;
1310 // Create a step value and add it to the PHI.
1311 // If IVIncInsertLoop is non-null and equal to the addrec's loop, insert the
1312 // instructions at IVIncInsertPos.
1313 Instruction *InsertPos = L == IVIncInsertLoop ?
1314 IVIncInsertPos : Pred->getTerminator();
1315 Builder.SetInsertPoint(InsertPos);
1316 Value *IncV = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1318 if (isa<OverflowingBinaryOperator>(IncV)) {
1319 if (IncrementIsNUW)
1320 cast<BinaryOperator>(IncV)->setHasNoUnsignedWrap();
1321 if (IncrementIsNSW)
1322 cast<BinaryOperator>(IncV)->setHasNoSignedWrap();
1324 PN->addIncoming(IncV, Pred);
1327 // After expanding subexpressions, restore the PostIncLoops set so the caller
1328 // can ensure that IVIncrement dominates the current uses.
1329 PostIncLoops = SavedPostIncLoops;
1331 // Remember this PHI, even in post-inc mode.
1332 InsertedValues.insert(PN);
1334 return PN;
1337 Value *SCEVExpander::expandAddRecExprLiterally(const SCEVAddRecExpr *S) {
1338 Type *STy = S->getType();
1339 Type *IntTy = SE.getEffectiveSCEVType(STy);
1340 const Loop *L = S->getLoop();
1342 // Determine a normalized form of this expression, which is the expression
1343 // before any post-inc adjustment is made.
1344 const SCEVAddRecExpr *Normalized = S;
1345 if (PostIncLoops.count(L)) {
1346 PostIncLoopSet Loops;
1347 Loops.insert(L);
1348 Normalized = cast<SCEVAddRecExpr>(normalizeForPostIncUse(S, Loops, SE));
1351 // Strip off any non-loop-dominating component from the addrec start.
1352 const SCEV *Start = Normalized->getStart();
1353 const SCEV *PostLoopOffset = nullptr;
1354 if (!SE.properlyDominates(Start, L->getHeader())) {
1355 PostLoopOffset = Start;
1356 Start = SE.getConstant(Normalized->getType(), 0);
1357 Normalized = cast<SCEVAddRecExpr>(
1358 SE.getAddRecExpr(Start, Normalized->getStepRecurrence(SE),
1359 Normalized->getLoop(),
1360 Normalized->getNoWrapFlags(SCEV::FlagNW)));
1363 // Strip off any non-loop-dominating component from the addrec step.
1364 const SCEV *Step = Normalized->getStepRecurrence(SE);
1365 const SCEV *PostLoopScale = nullptr;
1366 if (!SE.dominates(Step, L->getHeader())) {
1367 PostLoopScale = Step;
1368 Step = SE.getConstant(Normalized->getType(), 1);
1369 if (!Start->isZero()) {
1370 // The normalization below assumes that Start is constant zero, so if
1371 // it isn't re-associate Start to PostLoopOffset.
1372 assert(!PostLoopOffset && "Start not-null but PostLoopOffset set?");
1373 PostLoopOffset = Start;
1374 Start = SE.getConstant(Normalized->getType(), 0);
1376 Normalized =
1377 cast<SCEVAddRecExpr>(SE.getAddRecExpr(
1378 Start, Step, Normalized->getLoop(),
1379 Normalized->getNoWrapFlags(SCEV::FlagNW)));
1382 // Expand the core addrec. If we need post-loop scaling, force it to
1383 // expand to an integer type to avoid the need for additional casting.
1384 Type *ExpandTy = PostLoopScale ? IntTy : STy;
1385 // We can't use a pointer type for the addrec if the pointer type is
1386 // non-integral.
1387 Type *AddRecPHIExpandTy =
1388 DL.isNonIntegralPointerType(STy) ? Normalized->getType() : ExpandTy;
1390 // In some cases, we decide to reuse an existing phi node but need to truncate
1391 // it and/or invert the step.
1392 Type *TruncTy = nullptr;
1393 bool InvertStep = false;
1394 PHINode *PN = getAddRecExprPHILiterally(Normalized, L, AddRecPHIExpandTy,
1395 IntTy, TruncTy, InvertStep);
1397 // Accommodate post-inc mode, if necessary.
1398 Value *Result;
1399 if (!PostIncLoops.count(L))
1400 Result = PN;
1401 else {
1402 // In PostInc mode, use the post-incremented value.
1403 BasicBlock *LatchBlock = L->getLoopLatch();
1404 assert(LatchBlock && "PostInc mode requires a unique loop latch!");
1405 Result = PN->getIncomingValueForBlock(LatchBlock);
1407 // For an expansion to use the postinc form, the client must call
1408 // expandCodeFor with an InsertPoint that is either outside the PostIncLoop
1409 // or dominated by IVIncInsertPos.
1410 if (isa<Instruction>(Result) &&
1411 !SE.DT.dominates(cast<Instruction>(Result),
1412 &*Builder.GetInsertPoint())) {
1413 // The induction variable's postinc expansion does not dominate this use.
1414 // IVUsers tries to prevent this case, so it is rare. However, it can
1415 // happen when an IVUser outside the loop is not dominated by the latch
1416 // block. Adjusting IVIncInsertPos before expansion begins cannot handle
1417 // all cases. Consider a phi outside whose operand is replaced during
1418 // expansion with the value of the postinc user. Without fundamentally
1419 // changing the way postinc users are tracked, the only remedy is
1420 // inserting an extra IV increment. StepV might fold into PostLoopOffset,
1421 // but hopefully expandCodeFor handles that.
1422 bool useSubtract =
1423 !ExpandTy->isPointerTy() && Step->isNonConstantNegative();
1424 if (useSubtract)
1425 Step = SE.getNegativeSCEV(Step);
1426 Value *StepV;
1428 // Expand the step somewhere that dominates the loop header.
1429 SCEVInsertPointGuard Guard(Builder, this);
1430 StepV = expandCodeFor(Step, IntTy, &L->getHeader()->front());
1432 Result = expandIVInc(PN, StepV, L, ExpandTy, IntTy, useSubtract);
1436 // We have decided to reuse an induction variable of a dominating loop. Apply
1437 // truncation and/or inversion of the step.
1438 if (TruncTy) {
1439 Type *ResTy = Result->getType();
1440 // Normalize the result type.
1441 if (ResTy != SE.getEffectiveSCEVType(ResTy))
1442 Result = InsertNoopCastOfTo(Result, SE.getEffectiveSCEVType(ResTy));
1443 // Truncate the result.
1444 if (TruncTy != Result->getType()) {
1445 Result = Builder.CreateTrunc(Result, TruncTy);
1446 rememberInstruction(Result);
1448 // Invert the result.
1449 if (InvertStep) {
1450 Result = Builder.CreateSub(expandCodeFor(Normalized->getStart(), TruncTy),
1451 Result);
1452 rememberInstruction(Result);
1456 // Re-apply any non-loop-dominating scale.
1457 if (PostLoopScale) {
1458 assert(S->isAffine() && "Can't linearly scale non-affine recurrences.");
1459 Result = InsertNoopCastOfTo(Result, IntTy);
1460 Result = Builder.CreateMul(Result,
1461 expandCodeFor(PostLoopScale, IntTy));
1462 rememberInstruction(Result);
1465 // Re-apply any non-loop-dominating offset.
1466 if (PostLoopOffset) {
1467 if (PointerType *PTy = dyn_cast<PointerType>(ExpandTy)) {
1468 if (Result->getType()->isIntegerTy()) {
1469 Value *Base = expandCodeFor(PostLoopOffset, ExpandTy);
1470 Result = expandAddToGEP(SE.getUnknown(Result), PTy, IntTy, Base);
1471 } else {
1472 Result = expandAddToGEP(PostLoopOffset, PTy, IntTy, Result);
1474 } else {
1475 Result = InsertNoopCastOfTo(Result, IntTy);
1476 Result = Builder.CreateAdd(Result,
1477 expandCodeFor(PostLoopOffset, IntTy));
1478 rememberInstruction(Result);
1482 return Result;
1485 Value *SCEVExpander::visitAddRecExpr(const SCEVAddRecExpr *S) {
1486 // In canonical mode we compute the addrec as an expression of a canonical IV
1487 // using evaluateAtIteration and expand the resulting SCEV expression. This
1488 // way we avoid introducing new IVs to carry on the comutation of the addrec
1489 // throughout the loop.
1491 // For nested addrecs evaluateAtIteration might need a canonical IV of a
1492 // type wider than the addrec itself. Emitting a canonical IV of the
1493 // proper type might produce non-legal types, for example expanding an i64
1494 // {0,+,2,+,1} addrec would need an i65 canonical IV. To avoid this just fall
1495 // back to non-canonical mode for nested addrecs.
1496 if (!CanonicalMode || (S->getNumOperands() > 2))
1497 return expandAddRecExprLiterally(S);
1499 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1500 const Loop *L = S->getLoop();
1502 // First check for an existing canonical IV in a suitable type.
1503 PHINode *CanonicalIV = nullptr;
1504 if (PHINode *PN = L->getCanonicalInductionVariable())
1505 if (SE.getTypeSizeInBits(PN->getType()) >= SE.getTypeSizeInBits(Ty))
1506 CanonicalIV = PN;
1508 // Rewrite an AddRec in terms of the canonical induction variable, if
1509 // its type is more narrow.
1510 if (CanonicalIV &&
1511 SE.getTypeSizeInBits(CanonicalIV->getType()) >
1512 SE.getTypeSizeInBits(Ty)) {
1513 SmallVector<const SCEV *, 4> NewOps(S->getNumOperands());
1514 for (unsigned i = 0, e = S->getNumOperands(); i != e; ++i)
1515 NewOps[i] = SE.getAnyExtendExpr(S->op_begin()[i], CanonicalIV->getType());
1516 Value *V = expand(SE.getAddRecExpr(NewOps, S->getLoop(),
1517 S->getNoWrapFlags(SCEV::FlagNW)));
1518 BasicBlock::iterator NewInsertPt =
1519 findInsertPointAfter(cast<Instruction>(V), Builder.GetInsertBlock());
1520 V = expandCodeFor(SE.getTruncateExpr(SE.getUnknown(V), Ty), nullptr,
1521 &*NewInsertPt);
1522 return V;
1525 // {X,+,F} --> X + {0,+,F}
1526 if (!S->getStart()->isZero()) {
1527 SmallVector<const SCEV *, 4> NewOps(S->op_begin(), S->op_end());
1528 NewOps[0] = SE.getConstant(Ty, 0);
1529 const SCEV *Rest = SE.getAddRecExpr(NewOps, L,
1530 S->getNoWrapFlags(SCEV::FlagNW));
1532 // Turn things like ptrtoint+arithmetic+inttoptr into GEP. See the
1533 // comments on expandAddToGEP for details.
1534 const SCEV *Base = S->getStart();
1535 // Dig into the expression to find the pointer base for a GEP.
1536 const SCEV *ExposedRest = Rest;
1537 ExposePointerBase(Base, ExposedRest, SE);
1538 // If we found a pointer, expand the AddRec with a GEP.
1539 if (PointerType *PTy = dyn_cast<PointerType>(Base->getType())) {
1540 // Make sure the Base isn't something exotic, such as a multiplied
1541 // or divided pointer value. In those cases, the result type isn't
1542 // actually a pointer type.
1543 if (!isa<SCEVMulExpr>(Base) && !isa<SCEVUDivExpr>(Base)) {
1544 Value *StartV = expand(Base);
1545 assert(StartV->getType() == PTy && "Pointer type mismatch for GEP!");
1546 return expandAddToGEP(ExposedRest, PTy, Ty, StartV);
1550 // Just do a normal add. Pre-expand the operands to suppress folding.
1552 // The LHS and RHS values are factored out of the expand call to make the
1553 // output independent of the argument evaluation order.
1554 const SCEV *AddExprLHS = SE.getUnknown(expand(S->getStart()));
1555 const SCEV *AddExprRHS = SE.getUnknown(expand(Rest));
1556 return expand(SE.getAddExpr(AddExprLHS, AddExprRHS));
1559 // If we don't yet have a canonical IV, create one.
1560 if (!CanonicalIV) {
1561 // Create and insert the PHI node for the induction variable in the
1562 // specified loop.
1563 BasicBlock *Header = L->getHeader();
1564 pred_iterator HPB = pred_begin(Header), HPE = pred_end(Header);
1565 CanonicalIV = PHINode::Create(Ty, std::distance(HPB, HPE), "indvar",
1566 &Header->front());
1567 rememberInstruction(CanonicalIV);
1569 SmallSet<BasicBlock *, 4> PredSeen;
1570 Constant *One = ConstantInt::get(Ty, 1);
1571 for (pred_iterator HPI = HPB; HPI != HPE; ++HPI) {
1572 BasicBlock *HP = *HPI;
1573 if (!PredSeen.insert(HP).second) {
1574 // There must be an incoming value for each predecessor, even the
1575 // duplicates!
1576 CanonicalIV->addIncoming(CanonicalIV->getIncomingValueForBlock(HP), HP);
1577 continue;
1580 if (L->contains(HP)) {
1581 // Insert a unit add instruction right before the terminator
1582 // corresponding to the back-edge.
1583 Instruction *Add = BinaryOperator::CreateAdd(CanonicalIV, One,
1584 "indvar.next",
1585 HP->getTerminator());
1586 Add->setDebugLoc(HP->getTerminator()->getDebugLoc());
1587 rememberInstruction(Add);
1588 CanonicalIV->addIncoming(Add, HP);
1589 } else {
1590 CanonicalIV->addIncoming(Constant::getNullValue(Ty), HP);
1595 // {0,+,1} --> Insert a canonical induction variable into the loop!
1596 if (S->isAffine() && S->getOperand(1)->isOne()) {
1597 assert(Ty == SE.getEffectiveSCEVType(CanonicalIV->getType()) &&
1598 "IVs with types different from the canonical IV should "
1599 "already have been handled!");
1600 return CanonicalIV;
1603 // {0,+,F} --> {0,+,1} * F
1605 // If this is a simple linear addrec, emit it now as a special case.
1606 if (S->isAffine()) // {0,+,F} --> i*F
1607 return
1608 expand(SE.getTruncateOrNoop(
1609 SE.getMulExpr(SE.getUnknown(CanonicalIV),
1610 SE.getNoopOrAnyExtend(S->getOperand(1),
1611 CanonicalIV->getType())),
1612 Ty));
1614 // If this is a chain of recurrences, turn it into a closed form, using the
1615 // folders, then expandCodeFor the closed form. This allows the folders to
1616 // simplify the expression without having to build a bunch of special code
1617 // into this folder.
1618 const SCEV *IH = SE.getUnknown(CanonicalIV); // Get I as a "symbolic" SCEV.
1620 // Promote S up to the canonical IV type, if the cast is foldable.
1621 const SCEV *NewS = S;
1622 const SCEV *Ext = SE.getNoopOrAnyExtend(S, CanonicalIV->getType());
1623 if (isa<SCEVAddRecExpr>(Ext))
1624 NewS = Ext;
1626 const SCEV *V = cast<SCEVAddRecExpr>(NewS)->evaluateAtIteration(IH, SE);
1627 //cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
1629 // Truncate the result down to the original type, if needed.
1630 const SCEV *T = SE.getTruncateOrNoop(V, Ty);
1631 return expand(T);
1634 Value *SCEVExpander::visitTruncateExpr(const SCEVTruncateExpr *S) {
1635 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1636 Value *V = expandCodeFor(S->getOperand(),
1637 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1638 Value *I = Builder.CreateTrunc(V, Ty);
1639 rememberInstruction(I);
1640 return I;
1643 Value *SCEVExpander::visitZeroExtendExpr(const SCEVZeroExtendExpr *S) {
1644 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1645 Value *V = expandCodeFor(S->getOperand(),
1646 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1647 Value *I = Builder.CreateZExt(V, Ty);
1648 rememberInstruction(I);
1649 return I;
1652 Value *SCEVExpander::visitSignExtendExpr(const SCEVSignExtendExpr *S) {
1653 Type *Ty = SE.getEffectiveSCEVType(S->getType());
1654 Value *V = expandCodeFor(S->getOperand(),
1655 SE.getEffectiveSCEVType(S->getOperand()->getType()));
1656 Value *I = Builder.CreateSExt(V, Ty);
1657 rememberInstruction(I);
1658 return I;
1661 Value *SCEVExpander::visitSMaxExpr(const SCEVSMaxExpr *S) {
1662 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1663 Type *Ty = LHS->getType();
1664 for (int i = S->getNumOperands()-2; i >= 0; --i) {
1665 // In the case of mixed integer and pointer types, do the
1666 // rest of the comparisons as integer.
1667 Type *OpTy = S->getOperand(i)->getType();
1668 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1669 Ty = SE.getEffectiveSCEVType(Ty);
1670 LHS = InsertNoopCastOfTo(LHS, Ty);
1672 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1673 Value *ICmp = Builder.CreateICmpSGT(LHS, RHS);
1674 rememberInstruction(ICmp);
1675 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smax");
1676 rememberInstruction(Sel);
1677 LHS = Sel;
1679 // In the case of mixed integer and pointer types, cast the
1680 // final result back to the pointer type.
1681 if (LHS->getType() != S->getType())
1682 LHS = InsertNoopCastOfTo(LHS, S->getType());
1683 return LHS;
1686 Value *SCEVExpander::visitUMaxExpr(const SCEVUMaxExpr *S) {
1687 Value *LHS = expand(S->getOperand(S->getNumOperands()-1));
1688 Type *Ty = LHS->getType();
1689 for (int i = S->getNumOperands()-2; i >= 0; --i) {
1690 // In the case of mixed integer and pointer types, do the
1691 // rest of the comparisons as integer.
1692 Type *OpTy = S->getOperand(i)->getType();
1693 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1694 Ty = SE.getEffectiveSCEVType(Ty);
1695 LHS = InsertNoopCastOfTo(LHS, Ty);
1697 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1698 Value *ICmp = Builder.CreateICmpUGT(LHS, RHS);
1699 rememberInstruction(ICmp);
1700 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umax");
1701 rememberInstruction(Sel);
1702 LHS = Sel;
1704 // In the case of mixed integer and pointer types, cast the
1705 // final result back to the pointer type.
1706 if (LHS->getType() != S->getType())
1707 LHS = InsertNoopCastOfTo(LHS, S->getType());
1708 return LHS;
1711 Value *SCEVExpander::visitSMinExpr(const SCEVSMinExpr *S) {
1712 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1713 Type *Ty = LHS->getType();
1714 for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1715 // In the case of mixed integer and pointer types, do the
1716 // rest of the comparisons as integer.
1717 Type *OpTy = S->getOperand(i)->getType();
1718 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1719 Ty = SE.getEffectiveSCEVType(Ty);
1720 LHS = InsertNoopCastOfTo(LHS, Ty);
1722 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1723 Value *ICmp = Builder.CreateICmpSLT(LHS, RHS);
1724 rememberInstruction(ICmp);
1725 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "smin");
1726 rememberInstruction(Sel);
1727 LHS = Sel;
1729 // In the case of mixed integer and pointer types, cast the
1730 // final result back to the pointer type.
1731 if (LHS->getType() != S->getType())
1732 LHS = InsertNoopCastOfTo(LHS, S->getType());
1733 return LHS;
1736 Value *SCEVExpander::visitUMinExpr(const SCEVUMinExpr *S) {
1737 Value *LHS = expand(S->getOperand(S->getNumOperands() - 1));
1738 Type *Ty = LHS->getType();
1739 for (int i = S->getNumOperands() - 2; i >= 0; --i) {
1740 // In the case of mixed integer and pointer types, do the
1741 // rest of the comparisons as integer.
1742 Type *OpTy = S->getOperand(i)->getType();
1743 if (OpTy->isIntegerTy() != Ty->isIntegerTy()) {
1744 Ty = SE.getEffectiveSCEVType(Ty);
1745 LHS = InsertNoopCastOfTo(LHS, Ty);
1747 Value *RHS = expandCodeFor(S->getOperand(i), Ty);
1748 Value *ICmp = Builder.CreateICmpULT(LHS, RHS);
1749 rememberInstruction(ICmp);
1750 Value *Sel = Builder.CreateSelect(ICmp, LHS, RHS, "umin");
1751 rememberInstruction(Sel);
1752 LHS = Sel;
1754 // In the case of mixed integer and pointer types, cast the
1755 // final result back to the pointer type.
1756 if (LHS->getType() != S->getType())
1757 LHS = InsertNoopCastOfTo(LHS, S->getType());
1758 return LHS;
1761 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty,
1762 Instruction *IP) {
1763 setInsertPoint(IP);
1764 return expandCodeFor(SH, Ty);
1767 Value *SCEVExpander::expandCodeFor(const SCEV *SH, Type *Ty) {
1768 // Expand the code for this SCEV.
1769 Value *V = expand(SH);
1770 if (Ty) {
1771 assert(SE.getTypeSizeInBits(Ty) == SE.getTypeSizeInBits(SH->getType()) &&
1772 "non-trivial casts should be done with the SCEVs directly!");
1773 V = InsertNoopCastOfTo(V, Ty);
1775 return V;
1778 ScalarEvolution::ValueOffsetPair
1779 SCEVExpander::FindValueInExprValueMap(const SCEV *S,
1780 const Instruction *InsertPt) {
1781 SetVector<ScalarEvolution::ValueOffsetPair> *Set = SE.getSCEVValues(S);
1782 // If the expansion is not in CanonicalMode, and the SCEV contains any
1783 // sub scAddRecExpr type SCEV, it is required to expand the SCEV literally.
1784 if (CanonicalMode || !SE.containsAddRecurrence(S)) {
1785 // If S is scConstant, it may be worse to reuse an existing Value.
1786 if (S->getSCEVType() != scConstant && Set) {
1787 // Choose a Value from the set which dominates the insertPt.
1788 // insertPt should be inside the Value's parent loop so as not to break
1789 // the LCSSA form.
1790 for (auto const &VOPair : *Set) {
1791 Value *V = VOPair.first;
1792 ConstantInt *Offset = VOPair.second;
1793 Instruction *EntInst = nullptr;
1794 if (V && isa<Instruction>(V) && (EntInst = cast<Instruction>(V)) &&
1795 S->getType() == V->getType() &&
1796 EntInst->getFunction() == InsertPt->getFunction() &&
1797 SE.DT.dominates(EntInst, InsertPt) &&
1798 (SE.LI.getLoopFor(EntInst->getParent()) == nullptr ||
1799 SE.LI.getLoopFor(EntInst->getParent())->contains(InsertPt)))
1800 return {V, Offset};
1804 return {nullptr, nullptr};
1807 // The expansion of SCEV will either reuse a previous Value in ExprValueMap,
1808 // or expand the SCEV literally. Specifically, if the expansion is in LSRMode,
1809 // and the SCEV contains any sub scAddRecExpr type SCEV, it will be expanded
1810 // literally, to prevent LSR's transformed SCEV from being reverted. Otherwise,
1811 // the expansion will try to reuse Value from ExprValueMap, and only when it
1812 // fails, expand the SCEV literally.
1813 Value *SCEVExpander::expand(const SCEV *S) {
1814 // Compute an insertion point for this SCEV object. Hoist the instructions
1815 // as far out in the loop nest as possible.
1816 Instruction *InsertPt = &*Builder.GetInsertPoint();
1818 // We can move insertion point only if there is no div or rem operations
1819 // otherwise we are risky to move it over the check for zero denominator.
1820 auto SafeToHoist = [](const SCEV *S) {
1821 return !SCEVExprContains(S, [](const SCEV *S) {
1822 if (const auto *D = dyn_cast<SCEVUDivExpr>(S)) {
1823 if (const auto *SC = dyn_cast<SCEVConstant>(D->getRHS()))
1824 // Division by non-zero constants can be hoisted.
1825 return SC->getValue()->isZero();
1826 // All other divisions should not be moved as they may be
1827 // divisions by zero and should be kept within the
1828 // conditions of the surrounding loops that guard their
1829 // execution (see PR35406).
1830 return true;
1832 return false;
1835 if (SafeToHoist(S)) {
1836 for (Loop *L = SE.LI.getLoopFor(Builder.GetInsertBlock());;
1837 L = L->getParentLoop()) {
1838 if (SE.isLoopInvariant(S, L)) {
1839 if (!L) break;
1840 if (BasicBlock *Preheader = L->getLoopPreheader())
1841 InsertPt = Preheader->getTerminator();
1842 else
1843 // LSR sets the insertion point for AddRec start/step values to the
1844 // block start to simplify value reuse, even though it's an invalid
1845 // position. SCEVExpander must correct for this in all cases.
1846 InsertPt = &*L->getHeader()->getFirstInsertionPt();
1847 } else {
1848 // If the SCEV is computable at this level, insert it into the header
1849 // after the PHIs (and after any other instructions that we've inserted
1850 // there) so that it is guaranteed to dominate any user inside the loop.
1851 if (L && SE.hasComputableLoopEvolution(S, L) && !PostIncLoops.count(L))
1852 InsertPt = &*L->getHeader()->getFirstInsertionPt();
1853 while (InsertPt->getIterator() != Builder.GetInsertPoint() &&
1854 (isInsertedInstruction(InsertPt) ||
1855 isa<DbgInfoIntrinsic>(InsertPt)))
1856 InsertPt = &*std::next(InsertPt->getIterator());
1857 break;
1862 // IndVarSimplify sometimes sets the insertion point at the block start, even
1863 // when there are PHIs at that point. We must correct for this.
1864 if (isa<PHINode>(*InsertPt))
1865 InsertPt = &*InsertPt->getParent()->getFirstInsertionPt();
1867 // Check to see if we already expanded this here.
1868 auto I = InsertedExpressions.find(std::make_pair(S, InsertPt));
1869 if (I != InsertedExpressions.end())
1870 return I->second;
1872 SCEVInsertPointGuard Guard(Builder, this);
1873 Builder.SetInsertPoint(InsertPt);
1875 // Expand the expression into instructions.
1876 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, InsertPt);
1877 Value *V = VO.first;
1879 if (!V)
1880 V = visit(S);
1881 else if (VO.second) {
1882 if (PointerType *Vty = dyn_cast<PointerType>(V->getType())) {
1883 Type *Ety = Vty->getPointerElementType();
1884 int64_t Offset = VO.second->getSExtValue();
1885 int64_t ESize = SE.getTypeSizeInBits(Ety);
1886 if ((Offset * 8) % ESize == 0) {
1887 ConstantInt *Idx =
1888 ConstantInt::getSigned(VO.second->getType(), -(Offset * 8) / ESize);
1889 V = Builder.CreateGEP(Ety, V, Idx, "scevgep");
1890 } else {
1891 ConstantInt *Idx =
1892 ConstantInt::getSigned(VO.second->getType(), -Offset);
1893 unsigned AS = Vty->getAddressSpace();
1894 V = Builder.CreateBitCast(V, Type::getInt8PtrTy(SE.getContext(), AS));
1895 V = Builder.CreateGEP(Type::getInt8Ty(SE.getContext()), V, Idx,
1896 "uglygep");
1897 V = Builder.CreateBitCast(V, Vty);
1899 } else {
1900 V = Builder.CreateSub(V, VO.second);
1903 // Remember the expanded value for this SCEV at this location.
1905 // This is independent of PostIncLoops. The mapped value simply materializes
1906 // the expression at this insertion point. If the mapped value happened to be
1907 // a postinc expansion, it could be reused by a non-postinc user, but only if
1908 // its insertion point was already at the head of the loop.
1909 InsertedExpressions[std::make_pair(S, InsertPt)] = V;
1910 return V;
1913 void SCEVExpander::rememberInstruction(Value *I) {
1914 if (!PostIncLoops.empty())
1915 InsertedPostIncValues.insert(I);
1916 else
1917 InsertedValues.insert(I);
1920 /// getOrInsertCanonicalInductionVariable - This method returns the
1921 /// canonical induction variable of the specified type for the specified
1922 /// loop (inserting one if there is none). A canonical induction variable
1923 /// starts at zero and steps by one on each iteration.
1924 PHINode *
1925 SCEVExpander::getOrInsertCanonicalInductionVariable(const Loop *L,
1926 Type *Ty) {
1927 assert(Ty->isIntegerTy() && "Can only insert integer induction variables!");
1929 // Build a SCEV for {0,+,1}<L>.
1930 // Conservatively use FlagAnyWrap for now.
1931 const SCEV *H = SE.getAddRecExpr(SE.getConstant(Ty, 0),
1932 SE.getConstant(Ty, 1), L, SCEV::FlagAnyWrap);
1934 // Emit code for it.
1935 SCEVInsertPointGuard Guard(Builder, this);
1936 PHINode *V =
1937 cast<PHINode>(expandCodeFor(H, nullptr, &L->getHeader()->front()));
1939 return V;
1942 /// replaceCongruentIVs - Check for congruent phis in this loop header and
1943 /// replace them with their most canonical representative. Return the number of
1944 /// phis eliminated.
1946 /// This does not depend on any SCEVExpander state but should be used in
1947 /// the same context that SCEVExpander is used.
1948 unsigned
1949 SCEVExpander::replaceCongruentIVs(Loop *L, const DominatorTree *DT,
1950 SmallVectorImpl<WeakTrackingVH> &DeadInsts,
1951 const TargetTransformInfo *TTI) {
1952 // Find integer phis in order of increasing width.
1953 SmallVector<PHINode*, 8> Phis;
1954 for (PHINode &PN : L->getHeader()->phis())
1955 Phis.push_back(&PN);
1957 if (TTI)
1958 llvm::sort(Phis, [](Value *LHS, Value *RHS) {
1959 // Put pointers at the back and make sure pointer < pointer = false.
1960 if (!LHS->getType()->isIntegerTy() || !RHS->getType()->isIntegerTy())
1961 return RHS->getType()->isIntegerTy() && !LHS->getType()->isIntegerTy();
1962 return RHS->getType()->getPrimitiveSizeInBits() <
1963 LHS->getType()->getPrimitiveSizeInBits();
1966 unsigned NumElim = 0;
1967 DenseMap<const SCEV *, PHINode *> ExprToIVMap;
1968 // Process phis from wide to narrow. Map wide phis to their truncation
1969 // so narrow phis can reuse them.
1970 for (PHINode *Phi : Phis) {
1971 auto SimplifyPHINode = [&](PHINode *PN) -> Value * {
1972 if (Value *V = SimplifyInstruction(PN, {DL, &SE.TLI, &SE.DT, &SE.AC}))
1973 return V;
1974 if (!SE.isSCEVable(PN->getType()))
1975 return nullptr;
1976 auto *Const = dyn_cast<SCEVConstant>(SE.getSCEV(PN));
1977 if (!Const)
1978 return nullptr;
1979 return Const->getValue();
1982 // Fold constant phis. They may be congruent to other constant phis and
1983 // would confuse the logic below that expects proper IVs.
1984 if (Value *V = SimplifyPHINode(Phi)) {
1985 if (V->getType() != Phi->getType())
1986 continue;
1987 Phi->replaceAllUsesWith(V);
1988 DeadInsts.emplace_back(Phi);
1989 ++NumElim;
1990 DEBUG_WITH_TYPE(DebugType, dbgs()
1991 << "INDVARS: Eliminated constant iv: " << *Phi << '\n');
1992 continue;
1995 if (!SE.isSCEVable(Phi->getType()))
1996 continue;
1998 PHINode *&OrigPhiRef = ExprToIVMap[SE.getSCEV(Phi)];
1999 if (!OrigPhiRef) {
2000 OrigPhiRef = Phi;
2001 if (Phi->getType()->isIntegerTy() && TTI &&
2002 TTI->isTruncateFree(Phi->getType(), Phis.back()->getType())) {
2003 // This phi can be freely truncated to the narrowest phi type. Map the
2004 // truncated expression to it so it will be reused for narrow types.
2005 const SCEV *TruncExpr =
2006 SE.getTruncateExpr(SE.getSCEV(Phi), Phis.back()->getType());
2007 ExprToIVMap[TruncExpr] = Phi;
2009 continue;
2012 // Replacing a pointer phi with an integer phi or vice-versa doesn't make
2013 // sense.
2014 if (OrigPhiRef->getType()->isPointerTy() != Phi->getType()->isPointerTy())
2015 continue;
2017 if (BasicBlock *LatchBlock = L->getLoopLatch()) {
2018 Instruction *OrigInc = dyn_cast<Instruction>(
2019 OrigPhiRef->getIncomingValueForBlock(LatchBlock));
2020 Instruction *IsomorphicInc =
2021 dyn_cast<Instruction>(Phi->getIncomingValueForBlock(LatchBlock));
2023 if (OrigInc && IsomorphicInc) {
2024 // If this phi has the same width but is more canonical, replace the
2025 // original with it. As part of the "more canonical" determination,
2026 // respect a prior decision to use an IV chain.
2027 if (OrigPhiRef->getType() == Phi->getType() &&
2028 !(ChainedPhis.count(Phi) ||
2029 isExpandedAddRecExprPHI(OrigPhiRef, OrigInc, L)) &&
2030 (ChainedPhis.count(Phi) ||
2031 isExpandedAddRecExprPHI(Phi, IsomorphicInc, L))) {
2032 std::swap(OrigPhiRef, Phi);
2033 std::swap(OrigInc, IsomorphicInc);
2035 // Replacing the congruent phi is sufficient because acyclic
2036 // redundancy elimination, CSE/GVN, should handle the
2037 // rest. However, once SCEV proves that a phi is congruent,
2038 // it's often the head of an IV user cycle that is isomorphic
2039 // with the original phi. It's worth eagerly cleaning up the
2040 // common case of a single IV increment so that DeleteDeadPHIs
2041 // can remove cycles that had postinc uses.
2042 const SCEV *TruncExpr =
2043 SE.getTruncateOrNoop(SE.getSCEV(OrigInc), IsomorphicInc->getType());
2044 if (OrigInc != IsomorphicInc &&
2045 TruncExpr == SE.getSCEV(IsomorphicInc) &&
2046 SE.LI.replacementPreservesLCSSAForm(IsomorphicInc, OrigInc) &&
2047 hoistIVInc(OrigInc, IsomorphicInc)) {
2048 DEBUG_WITH_TYPE(DebugType,
2049 dbgs() << "INDVARS: Eliminated congruent iv.inc: "
2050 << *IsomorphicInc << '\n');
2051 Value *NewInc = OrigInc;
2052 if (OrigInc->getType() != IsomorphicInc->getType()) {
2053 Instruction *IP = nullptr;
2054 if (PHINode *PN = dyn_cast<PHINode>(OrigInc))
2055 IP = &*PN->getParent()->getFirstInsertionPt();
2056 else
2057 IP = OrigInc->getNextNode();
2059 IRBuilder<> Builder(IP);
2060 Builder.SetCurrentDebugLocation(IsomorphicInc->getDebugLoc());
2061 NewInc = Builder.CreateTruncOrBitCast(
2062 OrigInc, IsomorphicInc->getType(), IVName);
2064 IsomorphicInc->replaceAllUsesWith(NewInc);
2065 DeadInsts.emplace_back(IsomorphicInc);
2069 DEBUG_WITH_TYPE(DebugType, dbgs() << "INDVARS: Eliminated congruent iv: "
2070 << *Phi << '\n');
2071 ++NumElim;
2072 Value *NewIV = OrigPhiRef;
2073 if (OrigPhiRef->getType() != Phi->getType()) {
2074 IRBuilder<> Builder(&*L->getHeader()->getFirstInsertionPt());
2075 Builder.SetCurrentDebugLocation(Phi->getDebugLoc());
2076 NewIV = Builder.CreateTruncOrBitCast(OrigPhiRef, Phi->getType(), IVName);
2078 Phi->replaceAllUsesWith(NewIV);
2079 DeadInsts.emplace_back(Phi);
2081 return NumElim;
2084 Value *SCEVExpander::getExactExistingExpansion(const SCEV *S,
2085 const Instruction *At, Loop *L) {
2086 Optional<ScalarEvolution::ValueOffsetPair> VO =
2087 getRelatedExistingExpansion(S, At, L);
2088 if (VO && VO.getValue().second == nullptr)
2089 return VO.getValue().first;
2090 return nullptr;
2093 Optional<ScalarEvolution::ValueOffsetPair>
2094 SCEVExpander::getRelatedExistingExpansion(const SCEV *S, const Instruction *At,
2095 Loop *L) {
2096 using namespace llvm::PatternMatch;
2098 SmallVector<BasicBlock *, 4> ExitingBlocks;
2099 L->getExitingBlocks(ExitingBlocks);
2101 // Look for suitable value in simple conditions at the loop exits.
2102 for (BasicBlock *BB : ExitingBlocks) {
2103 ICmpInst::Predicate Pred;
2104 Instruction *LHS, *RHS;
2106 if (!match(BB->getTerminator(),
2107 m_Br(m_ICmp(Pred, m_Instruction(LHS), m_Instruction(RHS)),
2108 m_BasicBlock(), m_BasicBlock())))
2109 continue;
2111 if (SE.getSCEV(LHS) == S && SE.DT.dominates(LHS, At))
2112 return ScalarEvolution::ValueOffsetPair(LHS, nullptr);
2114 if (SE.getSCEV(RHS) == S && SE.DT.dominates(RHS, At))
2115 return ScalarEvolution::ValueOffsetPair(RHS, nullptr);
2118 // Use expand's logic which is used for reusing a previous Value in
2119 // ExprValueMap.
2120 ScalarEvolution::ValueOffsetPair VO = FindValueInExprValueMap(S, At);
2121 if (VO.first)
2122 return VO;
2124 // There is potential to make this significantly smarter, but this simple
2125 // heuristic already gets some interesting cases.
2127 // Can not find suitable value.
2128 return None;
2131 bool SCEVExpander::isHighCostExpansionHelper(
2132 const SCEV *S, Loop *L, const Instruction *At,
2133 SmallPtrSetImpl<const SCEV *> &Processed) {
2135 // If we can find an existing value for this scev available at the point "At"
2136 // then consider the expression cheap.
2137 if (At && getRelatedExistingExpansion(S, At, L))
2138 return false;
2140 // Zero/One operand expressions
2141 switch (S->getSCEVType()) {
2142 case scUnknown:
2143 case scConstant:
2144 return false;
2145 case scTruncate:
2146 return isHighCostExpansionHelper(cast<SCEVTruncateExpr>(S)->getOperand(),
2147 L, At, Processed);
2148 case scZeroExtend:
2149 return isHighCostExpansionHelper(cast<SCEVZeroExtendExpr>(S)->getOperand(),
2150 L, At, Processed);
2151 case scSignExtend:
2152 return isHighCostExpansionHelper(cast<SCEVSignExtendExpr>(S)->getOperand(),
2153 L, At, Processed);
2156 if (!Processed.insert(S).second)
2157 return false;
2159 if (auto *UDivExpr = dyn_cast<SCEVUDivExpr>(S)) {
2160 // If the divisor is a power of two and the SCEV type fits in a native
2161 // integer (and the LHS not expensive), consider the division cheap
2162 // irrespective of whether it occurs in the user code since it can be
2163 // lowered into a right shift.
2164 if (auto *SC = dyn_cast<SCEVConstant>(UDivExpr->getRHS()))
2165 if (SC->getAPInt().isPowerOf2()) {
2166 if (isHighCostExpansionHelper(UDivExpr->getLHS(), L, At, Processed))
2167 return true;
2168 const DataLayout &DL =
2169 L->getHeader()->getParent()->getParent()->getDataLayout();
2170 unsigned Width = cast<IntegerType>(UDivExpr->getType())->getBitWidth();
2171 return DL.isIllegalInteger(Width);
2174 // UDivExpr is very likely a UDiv that ScalarEvolution's HowFarToZero or
2175 // HowManyLessThans produced to compute a precise expression, rather than a
2176 // UDiv from the user's code. If we can't find a UDiv in the code with some
2177 // simple searching, assume the former consider UDivExpr expensive to
2178 // compute.
2179 BasicBlock *ExitingBB = L->getExitingBlock();
2180 if (!ExitingBB)
2181 return true;
2183 // At the beginning of this function we already tried to find existing value
2184 // for plain 'S'. Now try to lookup 'S + 1' since it is common pattern
2185 // involving division. This is just a simple search heuristic.
2186 if (!At)
2187 At = &ExitingBB->back();
2188 if (!getRelatedExistingExpansion(
2189 SE.getAddExpr(S, SE.getConstant(S->getType(), 1)), At, L))
2190 return true;
2193 // HowManyLessThans uses a Max expression whenever the loop is not guarded by
2194 // the exit condition.
2195 if (isa<SCEVMinMaxExpr>(S))
2196 return true;
2198 // Recurse past nary expressions, which commonly occur in the
2199 // BackedgeTakenCount. They may already exist in program code, and if not,
2200 // they are not too expensive rematerialize.
2201 if (const SCEVNAryExpr *NAry = dyn_cast<SCEVNAryExpr>(S)) {
2202 for (auto *Op : NAry->operands())
2203 if (isHighCostExpansionHelper(Op, L, At, Processed))
2204 return true;
2207 // If we haven't recognized an expensive SCEV pattern, assume it's an
2208 // expression produced by program code.
2209 return false;
2212 Value *SCEVExpander::expandCodeForPredicate(const SCEVPredicate *Pred,
2213 Instruction *IP) {
2214 assert(IP);
2215 switch (Pred->getKind()) {
2216 case SCEVPredicate::P_Union:
2217 return expandUnionPredicate(cast<SCEVUnionPredicate>(Pred), IP);
2218 case SCEVPredicate::P_Equal:
2219 return expandEqualPredicate(cast<SCEVEqualPredicate>(Pred), IP);
2220 case SCEVPredicate::P_Wrap: {
2221 auto *AddRecPred = cast<SCEVWrapPredicate>(Pred);
2222 return expandWrapPredicate(AddRecPred, IP);
2225 llvm_unreachable("Unknown SCEV predicate type");
2228 Value *SCEVExpander::expandEqualPredicate(const SCEVEqualPredicate *Pred,
2229 Instruction *IP) {
2230 Value *Expr0 = expandCodeFor(Pred->getLHS(), Pred->getLHS()->getType(), IP);
2231 Value *Expr1 = expandCodeFor(Pred->getRHS(), Pred->getRHS()->getType(), IP);
2233 Builder.SetInsertPoint(IP);
2234 auto *I = Builder.CreateICmpNE(Expr0, Expr1, "ident.check");
2235 return I;
2238 Value *SCEVExpander::generateOverflowCheck(const SCEVAddRecExpr *AR,
2239 Instruction *Loc, bool Signed) {
2240 assert(AR->isAffine() && "Cannot generate RT check for "
2241 "non-affine expression");
2243 SCEVUnionPredicate Pred;
2244 const SCEV *ExitCount =
2245 SE.getPredicatedBackedgeTakenCount(AR->getLoop(), Pred);
2247 assert(ExitCount != SE.getCouldNotCompute() && "Invalid loop count");
2249 const SCEV *Step = AR->getStepRecurrence(SE);
2250 const SCEV *Start = AR->getStart();
2252 Type *ARTy = AR->getType();
2253 unsigned SrcBits = SE.getTypeSizeInBits(ExitCount->getType());
2254 unsigned DstBits = SE.getTypeSizeInBits(ARTy);
2256 // The expression {Start,+,Step} has nusw/nssw if
2257 // Step < 0, Start - |Step| * Backedge <= Start
2258 // Step >= 0, Start + |Step| * Backedge > Start
2259 // and |Step| * Backedge doesn't unsigned overflow.
2261 IntegerType *CountTy = IntegerType::get(Loc->getContext(), SrcBits);
2262 Builder.SetInsertPoint(Loc);
2263 Value *TripCountVal = expandCodeFor(ExitCount, CountTy, Loc);
2265 IntegerType *Ty =
2266 IntegerType::get(Loc->getContext(), SE.getTypeSizeInBits(ARTy));
2267 Type *ARExpandTy = DL.isNonIntegralPointerType(ARTy) ? ARTy : Ty;
2269 Value *StepValue = expandCodeFor(Step, Ty, Loc);
2270 Value *NegStepValue = expandCodeFor(SE.getNegativeSCEV(Step), Ty, Loc);
2271 Value *StartValue = expandCodeFor(Start, ARExpandTy, Loc);
2273 ConstantInt *Zero =
2274 ConstantInt::get(Loc->getContext(), APInt::getNullValue(DstBits));
2276 Builder.SetInsertPoint(Loc);
2277 // Compute |Step|
2278 Value *StepCompare = Builder.CreateICmp(ICmpInst::ICMP_SLT, StepValue, Zero);
2279 Value *AbsStep = Builder.CreateSelect(StepCompare, NegStepValue, StepValue);
2281 // Get the backedge taken count and truncate or extended to the AR type.
2282 Value *TruncTripCount = Builder.CreateZExtOrTrunc(TripCountVal, Ty);
2283 auto *MulF = Intrinsic::getDeclaration(Loc->getModule(),
2284 Intrinsic::umul_with_overflow, Ty);
2286 // Compute |Step| * Backedge
2287 CallInst *Mul = Builder.CreateCall(MulF, {AbsStep, TruncTripCount}, "mul");
2288 Value *MulV = Builder.CreateExtractValue(Mul, 0, "mul.result");
2289 Value *OfMul = Builder.CreateExtractValue(Mul, 1, "mul.overflow");
2291 // Compute:
2292 // Start + |Step| * Backedge < Start
2293 // Start - |Step| * Backedge > Start
2294 Value *Add = nullptr, *Sub = nullptr;
2295 if (PointerType *ARPtrTy = dyn_cast<PointerType>(ARExpandTy)) {
2296 const SCEV *MulS = SE.getSCEV(MulV);
2297 const SCEV *NegMulS = SE.getNegativeSCEV(MulS);
2298 Add = Builder.CreateBitCast(expandAddToGEP(MulS, ARPtrTy, Ty, StartValue),
2299 ARPtrTy);
2300 Sub = Builder.CreateBitCast(
2301 expandAddToGEP(NegMulS, ARPtrTy, Ty, StartValue), ARPtrTy);
2302 } else {
2303 Add = Builder.CreateAdd(StartValue, MulV);
2304 Sub = Builder.CreateSub(StartValue, MulV);
2307 Value *EndCompareGT = Builder.CreateICmp(
2308 Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT, Sub, StartValue);
2310 Value *EndCompareLT = Builder.CreateICmp(
2311 Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT, Add, StartValue);
2313 // Select the answer based on the sign of Step.
2314 Value *EndCheck =
2315 Builder.CreateSelect(StepCompare, EndCompareGT, EndCompareLT);
2317 // If the backedge taken count type is larger than the AR type,
2318 // check that we don't drop any bits by truncating it. If we are
2319 // dropping bits, then we have overflow (unless the step is zero).
2320 if (SE.getTypeSizeInBits(CountTy) > SE.getTypeSizeInBits(Ty)) {
2321 auto MaxVal = APInt::getMaxValue(DstBits).zext(SrcBits);
2322 auto *BackedgeCheck =
2323 Builder.CreateICmp(ICmpInst::ICMP_UGT, TripCountVal,
2324 ConstantInt::get(Loc->getContext(), MaxVal));
2325 BackedgeCheck = Builder.CreateAnd(
2326 BackedgeCheck, Builder.CreateICmp(ICmpInst::ICMP_NE, StepValue, Zero));
2328 EndCheck = Builder.CreateOr(EndCheck, BackedgeCheck);
2331 EndCheck = Builder.CreateOr(EndCheck, OfMul);
2332 return EndCheck;
2335 Value *SCEVExpander::expandWrapPredicate(const SCEVWrapPredicate *Pred,
2336 Instruction *IP) {
2337 const auto *A = cast<SCEVAddRecExpr>(Pred->getExpr());
2338 Value *NSSWCheck = nullptr, *NUSWCheck = nullptr;
2340 // Add a check for NUSW
2341 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNUSW)
2342 NUSWCheck = generateOverflowCheck(A, IP, false);
2344 // Add a check for NSSW
2345 if (Pred->getFlags() & SCEVWrapPredicate::IncrementNSSW)
2346 NSSWCheck = generateOverflowCheck(A, IP, true);
2348 if (NUSWCheck && NSSWCheck)
2349 return Builder.CreateOr(NUSWCheck, NSSWCheck);
2351 if (NUSWCheck)
2352 return NUSWCheck;
2354 if (NSSWCheck)
2355 return NSSWCheck;
2357 return ConstantInt::getFalse(IP->getContext());
2360 Value *SCEVExpander::expandUnionPredicate(const SCEVUnionPredicate *Union,
2361 Instruction *IP) {
2362 auto *BoolType = IntegerType::get(IP->getContext(), 1);
2363 Value *Check = ConstantInt::getNullValue(BoolType);
2365 // Loop over all checks in this set.
2366 for (auto Pred : Union->getPredicates()) {
2367 auto *NextCheck = expandCodeForPredicate(Pred, IP);
2368 Builder.SetInsertPoint(IP);
2369 Check = Builder.CreateOr(Check, NextCheck);
2372 return Check;
2375 namespace {
2376 // Search for a SCEV subexpression that is not safe to expand. Any expression
2377 // that may expand to a !isSafeToSpeculativelyExecute value is unsafe, namely
2378 // UDiv expressions. We don't know if the UDiv is derived from an IR divide
2379 // instruction, but the important thing is that we prove the denominator is
2380 // nonzero before expansion.
2382 // IVUsers already checks that IV-derived expressions are safe. So this check is
2383 // only needed when the expression includes some subexpression that is not IV
2384 // derived.
2386 // Currently, we only allow division by a nonzero constant here. If this is
2387 // inadequate, we could easily allow division by SCEVUnknown by using
2388 // ValueTracking to check isKnownNonZero().
2390 // We cannot generally expand recurrences unless the step dominates the loop
2391 // header. The expander handles the special case of affine recurrences by
2392 // scaling the recurrence outside the loop, but this technique isn't generally
2393 // applicable. Expanding a nested recurrence outside a loop requires computing
2394 // binomial coefficients. This could be done, but the recurrence has to be in a
2395 // perfectly reduced form, which can't be guaranteed.
2396 struct SCEVFindUnsafe {
2397 ScalarEvolution &SE;
2398 bool IsUnsafe;
2400 SCEVFindUnsafe(ScalarEvolution &se): SE(se), IsUnsafe(false) {}
2402 bool follow(const SCEV *S) {
2403 if (const SCEVUDivExpr *D = dyn_cast<SCEVUDivExpr>(S)) {
2404 const SCEVConstant *SC = dyn_cast<SCEVConstant>(D->getRHS());
2405 if (!SC || SC->getValue()->isZero()) {
2406 IsUnsafe = true;
2407 return false;
2410 if (const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S)) {
2411 const SCEV *Step = AR->getStepRecurrence(SE);
2412 if (!AR->isAffine() && !SE.dominates(Step, AR->getLoop()->getHeader())) {
2413 IsUnsafe = true;
2414 return false;
2417 return true;
2419 bool isDone() const { return IsUnsafe; }
2423 namespace llvm {
2424 bool isSafeToExpand(const SCEV *S, ScalarEvolution &SE) {
2425 SCEVFindUnsafe Search(SE);
2426 visitAll(S, Search);
2427 return !Search.IsUnsafe;
2430 bool isSafeToExpandAt(const SCEV *S, const Instruction *InsertionPoint,
2431 ScalarEvolution &SE) {
2432 if (!isSafeToExpand(S, SE))
2433 return false;
2434 // We have to prove that the expanded site of S dominates InsertionPoint.
2435 // This is easy when not in the same block, but hard when S is an instruction
2436 // to be expanded somewhere inside the same block as our insertion point.
2437 // What we really need here is something analogous to an OrderedBasicBlock,
2438 // but for the moment, we paper over the problem by handling two common and
2439 // cheap to check cases.
2440 if (SE.properlyDominates(S, InsertionPoint->getParent()))
2441 return true;
2442 if (SE.dominates(S, InsertionPoint->getParent())) {
2443 if (InsertionPoint->getParent()->getTerminator() == InsertionPoint)
2444 return true;
2445 if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S))
2446 for (const Value *V : InsertionPoint->operand_values())
2447 if (V == U->getValue())
2448 return true;
2450 return false;