[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Target / AArch64 / AArch64A57FPLoadBalancing.cpp
blob13d389cec7a0776d53fbe2d37fc2a034290e7a5f
1 //===-- AArch64A57FPLoadBalancing.cpp - Balance FP ops statically on A57---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 // For best-case performance on Cortex-A57, we should try to use a balanced
9 // mix of odd and even D-registers when performing a critical sequence of
10 // independent, non-quadword FP/ASIMD floating-point multiply or
11 // multiply-accumulate operations.
13 // This pass attempts to detect situations where the register allocation may
14 // adversely affect this load balancing and to change the registers used so as
15 // to better utilize the CPU.
17 // Ideally we'd just take each multiply or multiply-accumulate in turn and
18 // allocate it alternating even or odd registers. However, multiply-accumulates
19 // are most efficiently performed in the same functional unit as their
20 // accumulation operand. Therefore this pass tries to find maximal sequences
21 // ("Chains") of multiply-accumulates linked via their accumulation operand,
22 // and assign them all the same "color" (oddness/evenness).
24 // This optimization affects S-register and D-register floating point
25 // multiplies and FMADD/FMAs, as well as vector (floating point only) muls and
26 // FMADD/FMA. Q register instructions (and 128-bit vector instructions) are
27 // not affected.
28 //===----------------------------------------------------------------------===//
30 #include "AArch64.h"
31 #include "AArch64InstrInfo.h"
32 #include "AArch64Subtarget.h"
33 #include "llvm/ADT/BitVector.h"
34 #include "llvm/ADT/EquivalenceClasses.h"
35 #include "llvm/CodeGen/MachineFunction.h"
36 #include "llvm/CodeGen/MachineFunctionPass.h"
37 #include "llvm/CodeGen/MachineInstr.h"
38 #include "llvm/CodeGen/MachineInstrBuilder.h"
39 #include "llvm/CodeGen/MachineRegisterInfo.h"
40 #include "llvm/CodeGen/RegisterClassInfo.h"
41 #include "llvm/CodeGen/RegisterScavenging.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/raw_ostream.h"
45 using namespace llvm;
47 #define DEBUG_TYPE "aarch64-a57-fp-load-balancing"
49 // Enforce the algorithm to use the scavenged register even when the original
50 // destination register is the correct color. Used for testing.
51 static cl::opt<bool>
52 TransformAll("aarch64-a57-fp-load-balancing-force-all",
53 cl::desc("Always modify dest registers regardless of color"),
54 cl::init(false), cl::Hidden);
56 // Never use the balance information obtained from chains - return a specific
57 // color always. Used for testing.
58 static cl::opt<unsigned>
59 OverrideBalance("aarch64-a57-fp-load-balancing-override",
60 cl::desc("Ignore balance information, always return "
61 "(1: Even, 2: Odd)."),
62 cl::init(0), cl::Hidden);
64 //===----------------------------------------------------------------------===//
65 // Helper functions
67 // Is the instruction a type of multiply on 64-bit (or 32-bit) FPRs?
68 static bool isMul(MachineInstr *MI) {
69 switch (MI->getOpcode()) {
70 case AArch64::FMULSrr:
71 case AArch64::FNMULSrr:
72 case AArch64::FMULDrr:
73 case AArch64::FNMULDrr:
74 return true;
75 default:
76 return false;
80 // Is the instruction a type of FP multiply-accumulate on 64-bit (or 32-bit) FPRs?
81 static bool isMla(MachineInstr *MI) {
82 switch (MI->getOpcode()) {
83 case AArch64::FMSUBSrrr:
84 case AArch64::FMADDSrrr:
85 case AArch64::FNMSUBSrrr:
86 case AArch64::FNMADDSrrr:
87 case AArch64::FMSUBDrrr:
88 case AArch64::FMADDDrrr:
89 case AArch64::FNMSUBDrrr:
90 case AArch64::FNMADDDrrr:
91 return true;
92 default:
93 return false;
97 //===----------------------------------------------------------------------===//
99 namespace {
100 /// A "color", which is either even or odd. Yes, these aren't really colors
101 /// but the algorithm is conceptually doing two-color graph coloring.
102 enum class Color { Even, Odd };
103 #ifndef NDEBUG
104 static const char *ColorNames[2] = { "Even", "Odd" };
105 #endif
107 class Chain;
109 class AArch64A57FPLoadBalancing : public MachineFunctionPass {
110 MachineRegisterInfo *MRI;
111 const TargetRegisterInfo *TRI;
112 RegisterClassInfo RCI;
114 public:
115 static char ID;
116 explicit AArch64A57FPLoadBalancing() : MachineFunctionPass(ID) {
117 initializeAArch64A57FPLoadBalancingPass(*PassRegistry::getPassRegistry());
120 bool runOnMachineFunction(MachineFunction &F) override;
122 MachineFunctionProperties getRequiredProperties() const override {
123 return MachineFunctionProperties().set(
124 MachineFunctionProperties::Property::NoVRegs);
127 StringRef getPassName() const override {
128 return "A57 FP Anti-dependency breaker";
131 void getAnalysisUsage(AnalysisUsage &AU) const override {
132 AU.setPreservesCFG();
133 MachineFunctionPass::getAnalysisUsage(AU);
136 private:
137 bool runOnBasicBlock(MachineBasicBlock &MBB);
138 bool colorChainSet(std::vector<Chain*> GV, MachineBasicBlock &MBB,
139 int &Balance);
140 bool colorChain(Chain *G, Color C, MachineBasicBlock &MBB);
141 int scavengeRegister(Chain *G, Color C, MachineBasicBlock &MBB);
142 void scanInstruction(MachineInstr *MI, unsigned Idx,
143 std::map<unsigned, Chain*> &Active,
144 std::vector<std::unique_ptr<Chain>> &AllChains);
145 void maybeKillChain(MachineOperand &MO, unsigned Idx,
146 std::map<unsigned, Chain*> &RegChains);
147 Color getColor(unsigned Register);
148 Chain *getAndEraseNext(Color PreferredColor, std::vector<Chain*> &L);
152 char AArch64A57FPLoadBalancing::ID = 0;
154 INITIALIZE_PASS_BEGIN(AArch64A57FPLoadBalancing, DEBUG_TYPE,
155 "AArch64 A57 FP Load-Balancing", false, false)
156 INITIALIZE_PASS_END(AArch64A57FPLoadBalancing, DEBUG_TYPE,
157 "AArch64 A57 FP Load-Balancing", false, false)
159 namespace {
160 /// A Chain is a sequence of instructions that are linked together by
161 /// an accumulation operand. For example:
163 /// fmul def d0, ?
164 /// fmla def d1, ?, ?, killed d0
165 /// fmla def d2, ?, ?, killed d1
167 /// There may be other instructions interleaved in the sequence that
168 /// do not belong to the chain. These other instructions must not use
169 /// the "chain" register at any point.
171 /// We currently only support chains where the "chain" operand is killed
172 /// at each link in the chain for simplicity.
173 /// A chain has three important instructions - Start, Last and Kill.
174 /// * The start instruction is the first instruction in the chain.
175 /// * Last is the final instruction in the chain.
176 /// * Kill may or may not be defined. If defined, Kill is the instruction
177 /// where the outgoing value of the Last instruction is killed.
178 /// This information is important as if we know the outgoing value is
179 /// killed with no intervening uses, we can safely change its register.
181 /// Without a kill instruction, we must assume the outgoing value escapes
182 /// beyond our model and either must not change its register or must
183 /// create a fixup FMOV to keep the old register value consistent.
185 class Chain {
186 public:
187 /// The important (marker) instructions.
188 MachineInstr *StartInst, *LastInst, *KillInst;
189 /// The index, from the start of the basic block, that each marker
190 /// appears. These are stored so we can do quick interval tests.
191 unsigned StartInstIdx, LastInstIdx, KillInstIdx;
192 /// All instructions in the chain.
193 std::set<MachineInstr*> Insts;
194 /// True if KillInst cannot be modified. If this is true,
195 /// we cannot change LastInst's outgoing register.
196 /// This will be true for tied values and regmasks.
197 bool KillIsImmutable;
198 /// The "color" of LastInst. This will be the preferred chain color,
199 /// as changing intermediate nodes is easy but changing the last
200 /// instruction can be more tricky.
201 Color LastColor;
203 Chain(MachineInstr *MI, unsigned Idx, Color C)
204 : StartInst(MI), LastInst(MI), KillInst(nullptr),
205 StartInstIdx(Idx), LastInstIdx(Idx), KillInstIdx(0),
206 LastColor(C) {
207 Insts.insert(MI);
210 /// Add a new instruction into the chain. The instruction's dest operand
211 /// has the given color.
212 void add(MachineInstr *MI, unsigned Idx, Color C) {
213 LastInst = MI;
214 LastInstIdx = Idx;
215 LastColor = C;
216 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
217 "Chain: broken invariant. A Chain can only be killed after its last "
218 "def");
220 Insts.insert(MI);
223 /// Return true if MI is a member of the chain.
224 bool contains(MachineInstr &MI) { return Insts.count(&MI) > 0; }
226 /// Return the number of instructions in the chain.
227 unsigned size() const {
228 return Insts.size();
231 /// Inform the chain that its last active register (the dest register of
232 /// LastInst) is killed by MI with no intervening uses or defs.
233 void setKill(MachineInstr *MI, unsigned Idx, bool Immutable) {
234 KillInst = MI;
235 KillInstIdx = Idx;
236 KillIsImmutable = Immutable;
237 assert((KillInstIdx == 0 || LastInstIdx < KillInstIdx) &&
238 "Chain: broken invariant. A Chain can only be killed after its last "
239 "def");
242 /// Return the first instruction in the chain.
243 MachineInstr *getStart() const { return StartInst; }
244 /// Return the last instruction in the chain.
245 MachineInstr *getLast() const { return LastInst; }
246 /// Return the "kill" instruction (as set with setKill()) or NULL.
247 MachineInstr *getKill() const { return KillInst; }
248 /// Return an instruction that can be used as an iterator for the end
249 /// of the chain. This is the maximum of KillInst (if set) and LastInst.
250 MachineBasicBlock::iterator end() const {
251 return ++MachineBasicBlock::iterator(KillInst ? KillInst : LastInst);
253 MachineBasicBlock::iterator begin() const { return getStart(); }
255 /// Can the Kill instruction (assuming one exists) be modified?
256 bool isKillImmutable() const { return KillIsImmutable; }
258 /// Return the preferred color of this chain.
259 Color getPreferredColor() {
260 if (OverrideBalance != 0)
261 return OverrideBalance == 1 ? Color::Even : Color::Odd;
262 return LastColor;
265 /// Return true if this chain (StartInst..KillInst) overlaps with Other.
266 bool rangeOverlapsWith(const Chain &Other) const {
267 unsigned End = KillInst ? KillInstIdx : LastInstIdx;
268 unsigned OtherEnd = Other.KillInst ?
269 Other.KillInstIdx : Other.LastInstIdx;
271 return StartInstIdx <= OtherEnd && Other.StartInstIdx <= End;
274 /// Return true if this chain starts before Other.
275 bool startsBefore(const Chain *Other) const {
276 return StartInstIdx < Other->StartInstIdx;
279 /// Return true if the group will require a fixup MOV at the end.
280 bool requiresFixup() const {
281 return (getKill() && isKillImmutable()) || !getKill();
284 /// Return a simple string representation of the chain.
285 std::string str() const {
286 std::string S;
287 raw_string_ostream OS(S);
289 OS << "{";
290 StartInst->print(OS, /* SkipOpers= */true);
291 OS << " -> ";
292 LastInst->print(OS, /* SkipOpers= */true);
293 if (KillInst) {
294 OS << " (kill @ ";
295 KillInst->print(OS, /* SkipOpers= */true);
296 OS << ")";
298 OS << "}";
300 return OS.str();
305 } // end anonymous namespace
307 //===----------------------------------------------------------------------===//
309 bool AArch64A57FPLoadBalancing::runOnMachineFunction(MachineFunction &F) {
310 if (skipFunction(F.getFunction()))
311 return false;
313 if (!F.getSubtarget<AArch64Subtarget>().balanceFPOps())
314 return false;
316 bool Changed = false;
317 LLVM_DEBUG(dbgs() << "***** AArch64A57FPLoadBalancing *****\n");
319 MRI = &F.getRegInfo();
320 TRI = F.getRegInfo().getTargetRegisterInfo();
321 RCI.runOnMachineFunction(F);
323 for (auto &MBB : F) {
324 Changed |= runOnBasicBlock(MBB);
327 return Changed;
330 bool AArch64A57FPLoadBalancing::runOnBasicBlock(MachineBasicBlock &MBB) {
331 bool Changed = false;
332 LLVM_DEBUG(dbgs() << "Running on MBB: " << MBB
333 << " - scanning instructions...\n");
335 // First, scan the basic block producing a set of chains.
337 // The currently "active" chains - chains that can be added to and haven't
338 // been killed yet. This is keyed by register - all chains can only have one
339 // "link" register between each inst in the chain.
340 std::map<unsigned, Chain*> ActiveChains;
341 std::vector<std::unique_ptr<Chain>> AllChains;
342 unsigned Idx = 0;
343 for (auto &MI : MBB)
344 scanInstruction(&MI, Idx++, ActiveChains, AllChains);
346 LLVM_DEBUG(dbgs() << "Scan complete, " << AllChains.size()
347 << " chains created.\n");
349 // Group the chains into disjoint sets based on their liveness range. This is
350 // a poor-man's version of graph coloring. Ideally we'd create an interference
351 // graph and perform full-on graph coloring on that, but;
352 // (a) That's rather heavyweight for only two colors.
353 // (b) We expect multiple disjoint interference regions - in practice the live
354 // range of chains is quite small and they are clustered between loads
355 // and stores.
356 EquivalenceClasses<Chain*> EC;
357 for (auto &I : AllChains)
358 EC.insert(I.get());
360 for (auto &I : AllChains)
361 for (auto &J : AllChains)
362 if (I != J && I->rangeOverlapsWith(*J))
363 EC.unionSets(I.get(), J.get());
364 LLVM_DEBUG(dbgs() << "Created " << EC.getNumClasses() << " disjoint sets.\n");
366 // Now we assume that every member of an equivalence class interferes
367 // with every other member of that class, and with no members of other classes.
369 // Convert the EquivalenceClasses to a simpler set of sets.
370 std::vector<std::vector<Chain*> > V;
371 for (auto I = EC.begin(), E = EC.end(); I != E; ++I) {
372 std::vector<Chain*> Cs(EC.member_begin(I), EC.member_end());
373 if (Cs.empty()) continue;
374 V.push_back(std::move(Cs));
377 // Now we have a set of sets, order them by start address so
378 // we can iterate over them sequentially.
379 llvm::sort(V,
380 [](const std::vector<Chain *> &A, const std::vector<Chain *> &B) {
381 return A.front()->startsBefore(B.front());
384 // As we only have two colors, we can track the global (BB-level) balance of
385 // odds versus evens. We aim to keep this near zero to keep both execution
386 // units fed.
387 // Positive means we're even-heavy, negative we're odd-heavy.
389 // FIXME: If chains have interdependencies, for example:
390 // mul r0, r1, r2
391 // mul r3, r0, r1
392 // We do not model this and may color each one differently, assuming we'll
393 // get ILP when we obviously can't. This hasn't been seen to be a problem
394 // in practice so far, so we simplify the algorithm by ignoring it.
395 int Parity = 0;
397 for (auto &I : V)
398 Changed |= colorChainSet(std::move(I), MBB, Parity);
400 return Changed;
403 Chain *AArch64A57FPLoadBalancing::getAndEraseNext(Color PreferredColor,
404 std::vector<Chain*> &L) {
405 if (L.empty())
406 return nullptr;
408 // We try and get the best candidate from L to color next, given that our
409 // preferred color is "PreferredColor". L is ordered from larger to smaller
410 // chains. It is beneficial to color the large chains before the small chains,
411 // but if we can't find a chain of the maximum length with the preferred color,
412 // we fuzz the size and look for slightly smaller chains before giving up and
413 // returning a chain that must be recolored.
415 // FIXME: Does this need to be configurable?
416 const unsigned SizeFuzz = 1;
417 unsigned MinSize = L.front()->size() - SizeFuzz;
418 for (auto I = L.begin(), E = L.end(); I != E; ++I) {
419 if ((*I)->size() <= MinSize) {
420 // We've gone past the size limit. Return the previous item.
421 Chain *Ch = *--I;
422 L.erase(I);
423 return Ch;
426 if ((*I)->getPreferredColor() == PreferredColor) {
427 Chain *Ch = *I;
428 L.erase(I);
429 return Ch;
433 // Bailout case - just return the first item.
434 Chain *Ch = L.front();
435 L.erase(L.begin());
436 return Ch;
439 bool AArch64A57FPLoadBalancing::colorChainSet(std::vector<Chain*> GV,
440 MachineBasicBlock &MBB,
441 int &Parity) {
442 bool Changed = false;
443 LLVM_DEBUG(dbgs() << "colorChainSet(): #sets=" << GV.size() << "\n");
445 // Sort by descending size order so that we allocate the most important
446 // sets first.
447 // Tie-break equivalent sizes by sorting chains requiring fixups before
448 // those without fixups. The logic here is that we should look at the
449 // chains that we cannot change before we look at those we can,
450 // so the parity counter is updated and we know what color we should
451 // change them to!
452 // Final tie-break with instruction order so pass output is stable (i.e. not
453 // dependent on malloc'd pointer values).
454 llvm::sort(GV, [](const Chain *G1, const Chain *G2) {
455 if (G1->size() != G2->size())
456 return G1->size() > G2->size();
457 if (G1->requiresFixup() != G2->requiresFixup())
458 return G1->requiresFixup() > G2->requiresFixup();
459 // Make sure startsBefore() produces a stable final order.
460 assert((G1 == G2 || (G1->startsBefore(G2) ^ G2->startsBefore(G1))) &&
461 "Starts before not total order!");
462 return G1->startsBefore(G2);
465 Color PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
466 while (Chain *G = getAndEraseNext(PreferredColor, GV)) {
467 // Start off by assuming we'll color to our own preferred color.
468 Color C = PreferredColor;
469 if (Parity == 0)
470 // But if we really don't care, use the chain's preferred color.
471 C = G->getPreferredColor();
473 LLVM_DEBUG(dbgs() << " - Parity=" << Parity
474 << ", Color=" << ColorNames[(int)C] << "\n");
476 // If we'll need a fixup FMOV, don't bother. Testing has shown that this
477 // happens infrequently and when it does it has at least a 50% chance of
478 // slowing code down instead of speeding it up.
479 if (G->requiresFixup() && C != G->getPreferredColor()) {
480 C = G->getPreferredColor();
481 LLVM_DEBUG(dbgs() << " - " << G->str()
482 << " - not worthwhile changing; "
483 "color remains "
484 << ColorNames[(int)C] << "\n");
487 Changed |= colorChain(G, C, MBB);
489 Parity += (C == Color::Even) ? G->size() : -G->size();
490 PreferredColor = Parity < 0 ? Color::Even : Color::Odd;
493 return Changed;
496 int AArch64A57FPLoadBalancing::scavengeRegister(Chain *G, Color C,
497 MachineBasicBlock &MBB) {
498 // Can we find an appropriate register that is available throughout the life
499 // of the chain? Simulate liveness backwards until the end of the chain.
500 LiveRegUnits Units(*TRI);
501 Units.addLiveOuts(MBB);
502 MachineBasicBlock::iterator I = MBB.end();
503 MachineBasicBlock::iterator ChainEnd = G->end();
504 while (I != ChainEnd) {
505 --I;
506 Units.stepBackward(*I);
509 // Check which register units are alive throughout the chain.
510 MachineBasicBlock::iterator ChainBegin = G->begin();
511 assert(ChainBegin != ChainEnd && "Chain should contain instructions");
512 do {
513 --I;
514 Units.accumulate(*I);
515 } while (I != ChainBegin);
517 // Make sure we allocate in-order, to get the cheapest registers first.
518 unsigned RegClassID = ChainBegin->getDesc().OpInfo[0].RegClass;
519 auto Ord = RCI.getOrder(TRI->getRegClass(RegClassID));
520 for (auto Reg : Ord) {
521 if (!Units.available(Reg))
522 continue;
523 if (C == getColor(Reg))
524 return Reg;
527 return -1;
530 bool AArch64A57FPLoadBalancing::colorChain(Chain *G, Color C,
531 MachineBasicBlock &MBB) {
532 bool Changed = false;
533 LLVM_DEBUG(dbgs() << " - colorChain(" << G->str() << ", "
534 << ColorNames[(int)C] << ")\n");
536 // Try and obtain a free register of the right class. Without a register
537 // to play with we cannot continue.
538 int Reg = scavengeRegister(G, C, MBB);
539 if (Reg == -1) {
540 LLVM_DEBUG(dbgs() << "Scavenging (thus coloring) failed!\n");
541 return false;
543 LLVM_DEBUG(dbgs() << " - Scavenged register: " << printReg(Reg, TRI) << "\n");
545 std::map<unsigned, unsigned> Substs;
546 for (MachineInstr &I : *G) {
547 if (!G->contains(I) && (&I != G->getKill() || G->isKillImmutable()))
548 continue;
550 // I is a member of G, or I is a mutable instruction that kills G.
552 std::vector<unsigned> ToErase;
553 for (auto &U : I.operands()) {
554 if (U.isReg() && U.isUse() && Substs.find(U.getReg()) != Substs.end()) {
555 Register OrigReg = U.getReg();
556 U.setReg(Substs[OrigReg]);
557 if (U.isKill())
558 // Don't erase straight away, because there may be other operands
559 // that also reference this substitution!
560 ToErase.push_back(OrigReg);
561 } else if (U.isRegMask()) {
562 for (auto J : Substs) {
563 if (U.clobbersPhysReg(J.first))
564 ToErase.push_back(J.first);
568 // Now it's safe to remove the substs identified earlier.
569 for (auto J : ToErase)
570 Substs.erase(J);
572 // Only change the def if this isn't the last instruction.
573 if (&I != G->getKill()) {
574 MachineOperand &MO = I.getOperand(0);
576 bool Change = TransformAll || getColor(MO.getReg()) != C;
577 if (G->requiresFixup() && &I == G->getLast())
578 Change = false;
580 if (Change) {
581 Substs[MO.getReg()] = Reg;
582 MO.setReg(Reg);
584 Changed = true;
588 assert(Substs.size() == 0 && "No substitutions should be left active!");
590 if (G->getKill()) {
591 LLVM_DEBUG(dbgs() << " - Kill instruction seen.\n");
592 } else {
593 // We didn't have a kill instruction, but we didn't seem to need to change
594 // the destination register anyway.
595 LLVM_DEBUG(dbgs() << " - Destination register not changed.\n");
597 return Changed;
600 void AArch64A57FPLoadBalancing::scanInstruction(
601 MachineInstr *MI, unsigned Idx, std::map<unsigned, Chain *> &ActiveChains,
602 std::vector<std::unique_ptr<Chain>> &AllChains) {
603 // Inspect "MI", updating ActiveChains and AllChains.
605 if (isMul(MI)) {
607 for (auto &I : MI->uses())
608 maybeKillChain(I, Idx, ActiveChains);
609 for (auto &I : MI->defs())
610 maybeKillChain(I, Idx, ActiveChains);
612 // Create a new chain. Multiplies don't require forwarding so can go on any
613 // unit.
614 Register DestReg = MI->getOperand(0).getReg();
616 LLVM_DEBUG(dbgs() << "New chain started for register "
617 << printReg(DestReg, TRI) << " at " << *MI);
619 auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
620 ActiveChains[DestReg] = G.get();
621 AllChains.push_back(std::move(G));
623 } else if (isMla(MI)) {
625 // It is beneficial to keep MLAs on the same functional unit as their
626 // accumulator operand.
627 Register DestReg = MI->getOperand(0).getReg();
628 Register AccumReg = MI->getOperand(3).getReg();
630 maybeKillChain(MI->getOperand(1), Idx, ActiveChains);
631 maybeKillChain(MI->getOperand(2), Idx, ActiveChains);
632 if (DestReg != AccumReg)
633 maybeKillChain(MI->getOperand(0), Idx, ActiveChains);
635 if (ActiveChains.find(AccumReg) != ActiveChains.end()) {
636 LLVM_DEBUG(dbgs() << "Chain found for accumulator register "
637 << printReg(AccumReg, TRI) << " in MI " << *MI);
639 // For simplicity we only chain together sequences of MULs/MLAs where the
640 // accumulator register is killed on each instruction. This means we don't
641 // need to track other uses of the registers we want to rewrite.
643 // FIXME: We could extend to handle the non-kill cases for more coverage.
644 if (MI->getOperand(3).isKill()) {
645 // Add to chain.
646 LLVM_DEBUG(dbgs() << "Instruction was successfully added to chain.\n");
647 ActiveChains[AccumReg]->add(MI, Idx, getColor(DestReg));
648 // Handle cases where the destination is not the same as the accumulator.
649 if (DestReg != AccumReg) {
650 ActiveChains[DestReg] = ActiveChains[AccumReg];
651 ActiveChains.erase(AccumReg);
653 return;
656 LLVM_DEBUG(
657 dbgs() << "Cannot add to chain because accumulator operand wasn't "
658 << "marked <kill>!\n");
659 maybeKillChain(MI->getOperand(3), Idx, ActiveChains);
662 LLVM_DEBUG(dbgs() << "Creating new chain for dest register "
663 << printReg(DestReg, TRI) << "\n");
664 auto G = std::make_unique<Chain>(MI, Idx, getColor(DestReg));
665 ActiveChains[DestReg] = G.get();
666 AllChains.push_back(std::move(G));
668 } else {
670 // Non-MUL or MLA instruction. Invalidate any chain in the uses or defs
671 // lists.
672 for (auto &I : MI->uses())
673 maybeKillChain(I, Idx, ActiveChains);
674 for (auto &I : MI->defs())
675 maybeKillChain(I, Idx, ActiveChains);
680 void AArch64A57FPLoadBalancing::
681 maybeKillChain(MachineOperand &MO, unsigned Idx,
682 std::map<unsigned, Chain*> &ActiveChains) {
683 // Given an operand and the set of active chains (keyed by register),
684 // determine if a chain should be ended and remove from ActiveChains.
685 MachineInstr *MI = MO.getParent();
687 if (MO.isReg()) {
689 // If this is a KILL of a current chain, record it.
690 if (MO.isKill() && ActiveChains.find(MO.getReg()) != ActiveChains.end()) {
691 LLVM_DEBUG(dbgs() << "Kill seen for chain " << printReg(MO.getReg(), TRI)
692 << "\n");
693 ActiveChains[MO.getReg()]->setKill(MI, Idx, /*Immutable=*/MO.isTied());
695 ActiveChains.erase(MO.getReg());
697 } else if (MO.isRegMask()) {
699 for (auto I = ActiveChains.begin(), E = ActiveChains.end();
700 I != E;) {
701 if (MO.clobbersPhysReg(I->first)) {
702 LLVM_DEBUG(dbgs() << "Kill (regmask) seen for chain "
703 << printReg(I->first, TRI) << "\n");
704 I->second->setKill(MI, Idx, /*Immutable=*/true);
705 ActiveChains.erase(I++);
706 } else
707 ++I;
713 Color AArch64A57FPLoadBalancing::getColor(unsigned Reg) {
714 if ((TRI->getEncodingValue(Reg) % 2) == 0)
715 return Color::Even;
716 else
717 return Color::Odd;
720 // Factory function used by AArch64TargetMachine to add the pass to the passmanager.
721 FunctionPass *llvm::createAArch64A57FPLoadBalancing() {
722 return new AArch64A57FPLoadBalancing();