[MIPS GlobalISel] Select MSA vector generic and builtin add
[llvm-complete.git] / lib / Target / ARM / ARMCodeGenPrepare.cpp
blob1c2c8aef55bb806aa30ba956bd1aea69958adf38
1 //===----- ARMCodeGenPrepare.cpp ------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass inserts intrinsics to handle small types that would otherwise be
11 /// promoted during legalization. Here we can manually promote types or insert
12 /// intrinsics which can handle narrow types that aren't supported by the
13 /// register classes.
15 //===----------------------------------------------------------------------===//
17 #include "ARM.h"
18 #include "ARMSubtarget.h"
19 #include "ARMTargetMachine.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetPassConfig.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/IRBuilder.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/InstrTypes.h"
28 #include "llvm/IR/Instruction.h"
29 #include "llvm/IR/Instructions.h"
30 #include "llvm/IR/IntrinsicInst.h"
31 #include "llvm/IR/Intrinsics.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/IR/Verifier.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/Casting.h"
37 #include "llvm/Support/CommandLine.h"
39 #define DEBUG_TYPE "arm-codegenprepare"
41 using namespace llvm;
43 static cl::opt<bool>
44 DisableCGP("arm-disable-cgp", cl::Hidden, cl::init(true),
45 cl::desc("Disable ARM specific CodeGenPrepare pass"));
47 static cl::opt<bool>
48 EnableDSP("arm-enable-scalar-dsp", cl::Hidden, cl::init(false),
49 cl::desc("Use DSP instructions for scalar operations"));
51 static cl::opt<bool>
52 EnableDSPWithImms("arm-enable-scalar-dsp-imms", cl::Hidden, cl::init(false),
53 cl::desc("Use DSP instructions for scalar operations\
54 with immediate operands"));
56 // The goal of this pass is to enable more efficient code generation for
57 // operations on narrow types (i.e. types with < 32-bits) and this is a
58 // motivating IR code example:
60 // define hidden i32 @cmp(i8 zeroext) {
61 // %2 = add i8 %0, -49
62 // %3 = icmp ult i8 %2, 3
63 // ..
64 // }
66 // The issue here is that i8 is type-legalized to i32 because i8 is not a
67 // legal type. Thus, arithmetic is done in integer-precision, but then the
68 // byte value is masked out as follows:
70 // t19: i32 = add t4, Constant:i32<-49>
71 // t24: i32 = and t19, Constant:i32<255>
73 // Consequently, we generate code like this:
75 // subs r0, #49
76 // uxtb r1, r0
77 // cmp r1, #3
79 // This shows that masking out the byte value results in generation of
80 // the UXTB instruction. This is not optimal as r0 already contains the byte
81 // value we need, and so instead we can just generate:
83 // sub.w r1, r0, #49
84 // cmp r1, #3
86 // We achieve this by type promoting the IR to i32 like so for this example:
88 // define i32 @cmp(i8 zeroext %c) {
89 // %0 = zext i8 %c to i32
90 // %c.off = add i32 %0, -49
91 // %1 = icmp ult i32 %c.off, 3
92 // ..
93 // }
95 // For this to be valid and legal, we need to prove that the i32 add is
96 // producing the same value as the i8 addition, and that e.g. no overflow
97 // happens.
99 // A brief sketch of the algorithm and some terminology.
100 // We pattern match interesting IR patterns:
101 // - which have "sources": instructions producing narrow values (i8, i16), and
102 // - they have "sinks": instructions consuming these narrow values.
104 // We collect all instruction connecting sources and sinks in a worklist, so
105 // that we can mutate these instruction and perform type promotion when it is
106 // legal to do so.
108 namespace {
109 class IRPromoter {
110 SmallPtrSet<Value*, 8> NewInsts;
111 SmallPtrSet<Instruction*, 4> InstsToRemove;
112 DenseMap<Value*, SmallVector<Type*, 4>> TruncTysMap;
113 SmallPtrSet<Value*, 8> Promoted;
114 Module *M = nullptr;
115 LLVMContext &Ctx;
116 // The type we promote to: always i32
117 IntegerType *ExtTy = nullptr;
118 // The type of the value that the search began from, either i8 or i16.
119 // This defines the max range of the values that we allow in the promoted
120 // tree.
121 IntegerType *OrigTy = nullptr;
122 SetVector<Value*> *Visited;
123 SmallPtrSetImpl<Value*> *Sources;
124 SmallPtrSetImpl<Instruction*> *Sinks;
125 SmallPtrSetImpl<Instruction*> *SafeToPromote;
126 SmallPtrSetImpl<Instruction*> *SafeWrap;
128 void ReplaceAllUsersOfWith(Value *From, Value *To);
129 void PrepareWrappingAdds(void);
130 void ExtendSources(void);
131 void ConvertTruncs(void);
132 void PromoteTree(void);
133 void TruncateSinks(void);
134 void Cleanup(void);
136 public:
137 IRPromoter(Module *M) : M(M), Ctx(M->getContext()),
138 ExtTy(Type::getInt32Ty(Ctx)) { }
141 void Mutate(Type *OrigTy,
142 SetVector<Value*> &Visited,
143 SmallPtrSetImpl<Value*> &Sources,
144 SmallPtrSetImpl<Instruction*> &Sinks,
145 SmallPtrSetImpl<Instruction*> &SafeToPromote,
146 SmallPtrSetImpl<Instruction*> &SafeWrap);
149 class ARMCodeGenPrepare : public FunctionPass {
150 const ARMSubtarget *ST = nullptr;
151 IRPromoter *Promoter = nullptr;
152 std::set<Value*> AllVisited;
153 SmallPtrSet<Instruction*, 8> SafeToPromote;
154 SmallPtrSet<Instruction*, 4> SafeWrap;
156 bool isSafeWrap(Instruction *I);
157 bool isSupportedValue(Value *V);
158 bool isLegalToPromote(Value *V);
159 bool TryToPromote(Value *V);
161 public:
162 static char ID;
163 static unsigned TypeSize;
164 Type *OrigTy = nullptr;
166 ARMCodeGenPrepare() : FunctionPass(ID) {}
168 void getAnalysisUsage(AnalysisUsage &AU) const override {
169 AU.addRequired<TargetPassConfig>();
172 StringRef getPassName() const override { return "ARM IR optimizations"; }
174 bool doInitialization(Module &M) override;
175 bool runOnFunction(Function &F) override;
176 bool doFinalization(Module &M) override;
181 static bool GenerateSignBits(Value *V) {
182 if (!isa<Instruction>(V))
183 return false;
185 unsigned Opc = cast<Instruction>(V)->getOpcode();
186 return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
187 Opc == Instruction::SRem || Opc == Instruction::SExt;
190 static bool EqualTypeSize(Value *V) {
191 return V->getType()->getScalarSizeInBits() == ARMCodeGenPrepare::TypeSize;
194 static bool LessOrEqualTypeSize(Value *V) {
195 return V->getType()->getScalarSizeInBits() <= ARMCodeGenPrepare::TypeSize;
198 static bool GreaterThanTypeSize(Value *V) {
199 return V->getType()->getScalarSizeInBits() > ARMCodeGenPrepare::TypeSize;
202 static bool LessThanTypeSize(Value *V) {
203 return V->getType()->getScalarSizeInBits() < ARMCodeGenPrepare::TypeSize;
206 /// Some instructions can use 8- and 16-bit operands, and we don't need to
207 /// promote anything larger. We disallow booleans to make life easier when
208 /// dealing with icmps but allow any other integer that is <= 16 bits. Void
209 /// types are accepted so we can handle switches.
210 static bool isSupportedType(Value *V) {
211 Type *Ty = V->getType();
213 // Allow voids and pointers, these won't be promoted.
214 if (Ty->isVoidTy() || Ty->isPointerTy())
215 return true;
217 if (auto *Ld = dyn_cast<LoadInst>(V))
218 Ty = cast<PointerType>(Ld->getPointerOperandType())->getElementType();
220 if (!isa<IntegerType>(Ty) ||
221 cast<IntegerType>(V->getType())->getBitWidth() == 1)
222 return false;
224 return LessOrEqualTypeSize(V);
227 /// Return true if the given value is a source in the use-def chain, producing
228 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
229 /// of the tree to i32. We guarantee that these won't populate the upper bits
230 /// of the register. ZExt on the loads will be free, and the same for call
231 /// return values because we only accept ones that guarantee a zeroext ret val.
232 /// Many arguments will have the zeroext attribute too, so those would be free
233 /// too.
234 static bool isSource(Value *V) {
235 if (!isa<IntegerType>(V->getType()))
236 return false;
238 // TODO Allow zext to be sources.
239 if (isa<Argument>(V))
240 return true;
241 else if (isa<LoadInst>(V))
242 return true;
243 else if (isa<BitCastInst>(V))
244 return true;
245 else if (auto *Call = dyn_cast<CallInst>(V))
246 return Call->hasRetAttr(Attribute::AttrKind::ZExt);
247 else if (auto *Trunc = dyn_cast<TruncInst>(V))
248 return EqualTypeSize(Trunc);
249 return false;
252 /// Return true if V will require any promoted values to be truncated for the
253 /// the IR to remain valid. We can't mutate the value type of these
254 /// instructions.
255 static bool isSink(Value *V) {
256 // TODO The truncate also isn't actually necessary because we would already
257 // proved that the data value is kept within the range of the original data
258 // type.
260 // Sinks are:
261 // - points where the value in the register is being observed, such as an
262 // icmp, switch or store.
263 // - points where value types have to match, such as calls and returns.
264 // - zext are included to ease the transformation and are generally removed
265 // later on.
266 if (auto *Store = dyn_cast<StoreInst>(V))
267 return LessOrEqualTypeSize(Store->getValueOperand());
268 if (auto *Return = dyn_cast<ReturnInst>(V))
269 return LessOrEqualTypeSize(Return->getReturnValue());
270 if (auto *ZExt = dyn_cast<ZExtInst>(V))
271 return GreaterThanTypeSize(ZExt);
272 if (auto *Switch = dyn_cast<SwitchInst>(V))
273 return LessThanTypeSize(Switch->getCondition());
274 if (auto *ICmp = dyn_cast<ICmpInst>(V))
275 return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
277 return isa<CallInst>(V);
280 /// Return whether this instruction can safely wrap.
281 bool ARMCodeGenPrepare::isSafeWrap(Instruction *I) {
282 // We can support a, potentially, wrapping instruction (I) if:
283 // - It is only used by an unsigned icmp.
284 // - The icmp uses a constant.
285 // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
286 // around zero to become a larger number than before.
287 // - The wrapping instruction (I) also uses a constant.
289 // We can then use the two constants to calculate whether the result would
290 // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
291 // just underflows the range, the icmp would give the same result whether the
292 // result has been truncated or not. We calculate this by:
293 // - Zero extending both constants, if needed, to 32-bits.
294 // - Take the absolute value of I's constant, adding this to the icmp const.
295 // - Check that this value is not out of range for small type. If it is, it
296 // means that it has underflowed enough to wrap around the icmp constant.
298 // For example:
300 // %sub = sub i8 %a, 2
301 // %cmp = icmp ule i8 %sub, 254
303 // If %a = 0, %sub = -2 == FE == 254
304 // But if this is evalulated as a i32
305 // %sub = -2 == FF FF FF FE == 4294967294
306 // So the unsigned compares (i8 and i32) would not yield the same result.
308 // Another way to look at it is:
309 // %a - 2 <= 254
310 // %a + 2 <= 254 + 2
311 // %a <= 256
312 // And we can't represent 256 in the i8 format, so we don't support it.
314 // Whereas:
316 // %sub i8 %a, 1
317 // %cmp = icmp ule i8 %sub, 254
319 // If %a = 0, %sub = -1 == FF == 255
320 // As i32:
321 // %sub = -1 == FF FF FF FF == 4294967295
323 // In this case, the unsigned compare results would be the same and this
324 // would also be true for ult, uge and ugt:
325 // - (255 < 254) == (0xFFFFFFFF < 254) == false
326 // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
327 // - (255 > 254) == (0xFFFFFFFF > 254) == true
328 // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
330 // To demonstrate why we can't handle increasing values:
332 // %add = add i8 %a, 2
333 // %cmp = icmp ult i8 %add, 127
335 // If %a = 254, %add = 256 == (i8 1)
336 // As i32:
337 // %add = 256
339 // (1 < 127) != (256 < 127)
341 unsigned Opc = I->getOpcode();
342 if (Opc != Instruction::Add && Opc != Instruction::Sub)
343 return false;
345 if (!I->hasOneUse() ||
346 !isa<ICmpInst>(*I->user_begin()) ||
347 !isa<ConstantInt>(I->getOperand(1)))
348 return false;
350 ConstantInt *OverflowConst = cast<ConstantInt>(I->getOperand(1));
351 bool NegImm = OverflowConst->isNegative();
352 bool IsDecreasing = ((Opc == Instruction::Sub) && !NegImm) ||
353 ((Opc == Instruction::Add) && NegImm);
354 if (!IsDecreasing)
355 return false;
357 // Don't support an icmp that deals with sign bits.
358 auto *CI = cast<ICmpInst>(*I->user_begin());
359 if (CI->isSigned() || CI->isEquality())
360 return false;
362 ConstantInt *ICmpConst = nullptr;
363 if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
364 ICmpConst = Const;
365 else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
366 ICmpConst = Const;
367 else
368 return false;
370 // Now check that the result can't wrap on itself.
371 APInt Total = ICmpConst->getValue().getBitWidth() < 32 ?
372 ICmpConst->getValue().zext(32) : ICmpConst->getValue();
374 Total += OverflowConst->getValue().getBitWidth() < 32 ?
375 OverflowConst->getValue().abs().zext(32) : OverflowConst->getValue().abs();
377 APInt Max = APInt::getAllOnesValue(ARMCodeGenPrepare::TypeSize);
379 if (Total.getBitWidth() > Max.getBitWidth()) {
380 if (Total.ugt(Max.zext(Total.getBitWidth())))
381 return false;
382 } else if (Max.getBitWidth() > Total.getBitWidth()) {
383 if (Total.zext(Max.getBitWidth()).ugt(Max))
384 return false;
385 } else if (Total.ugt(Max))
386 return false;
388 LLVM_DEBUG(dbgs() << "ARM CGP: Allowing safe overflow for " << *I << "\n");
389 SafeWrap.insert(I);
390 return true;
393 static bool shouldPromote(Value *V) {
394 if (!isa<IntegerType>(V->getType()) || isSink(V))
395 return false;
397 if (isSource(V))
398 return true;
400 auto *I = dyn_cast<Instruction>(V);
401 if (!I)
402 return false;
404 if (isa<ICmpInst>(I))
405 return false;
407 return true;
410 /// Return whether we can safely mutate V's type to ExtTy without having to be
411 /// concerned with zero extending or truncation.
412 static bool isPromotedResultSafe(Value *V) {
413 if (GenerateSignBits(V))
414 return false;
416 if (!isa<Instruction>(V))
417 return true;
419 if (!isa<OverflowingBinaryOperator>(V))
420 return true;
422 return cast<Instruction>(V)->hasNoUnsignedWrap();
425 /// Return the intrinsic for the instruction that can perform the same
426 /// operation but on a narrow type. This is using the parallel dsp intrinsics
427 /// on scalar values.
428 static Intrinsic::ID getNarrowIntrinsic(Instruction *I) {
429 // Whether we use the signed or unsigned versions of these intrinsics
430 // doesn't matter because we're not using the GE bits that they set in
431 // the APSR.
432 switch(I->getOpcode()) {
433 default:
434 break;
435 case Instruction::Add:
436 return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_uadd16 :
437 Intrinsic::arm_uadd8;
438 case Instruction::Sub:
439 return ARMCodeGenPrepare::TypeSize == 16 ? Intrinsic::arm_usub16 :
440 Intrinsic::arm_usub8;
442 llvm_unreachable("unhandled opcode for narrow intrinsic");
445 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
446 SmallVector<Instruction*, 4> Users;
447 Instruction *InstTo = dyn_cast<Instruction>(To);
448 bool ReplacedAll = true;
450 LLVM_DEBUG(dbgs() << "ARM CGP: Replacing " << *From << " with " << *To
451 << "\n");
453 for (Use &U : From->uses()) {
454 auto *User = cast<Instruction>(U.getUser());
455 if (InstTo && User->isIdenticalTo(InstTo)) {
456 ReplacedAll = false;
457 continue;
459 Users.push_back(User);
462 for (auto *U : Users)
463 U->replaceUsesOfWith(From, To);
465 if (ReplacedAll)
466 if (auto *I = dyn_cast<Instruction>(From))
467 InstsToRemove.insert(I);
470 void IRPromoter::PrepareWrappingAdds() {
471 LLVM_DEBUG(dbgs() << "ARM CGP: Prepare underflowing adds.\n");
472 IRBuilder<> Builder{Ctx};
474 // For adds that safely wrap and use a negative immediate as operand 1, we
475 // create an equivalent instruction using a positive immediate.
476 // That positive immediate can then be zext along with all the other
477 // immediates later.
478 for (auto *I : *SafeWrap) {
479 if (I->getOpcode() != Instruction::Add)
480 continue;
482 LLVM_DEBUG(dbgs() << "ARM CGP: Adjusting " << *I << "\n");
483 assert((isa<ConstantInt>(I->getOperand(1)) &&
484 cast<ConstantInt>(I->getOperand(1))->isNegative()) &&
485 "Wrapping should have a negative immediate as the second operand");
487 auto Const = cast<ConstantInt>(I->getOperand(1));
488 auto *NewConst = ConstantInt::get(Ctx, Const->getValue().abs());
489 Builder.SetInsertPoint(I);
490 Value *NewVal = Builder.CreateSub(I->getOperand(0), NewConst);
491 if (auto *NewInst = dyn_cast<Instruction>(NewVal)) {
492 NewInst->copyIRFlags(I);
493 NewInsts.insert(NewInst);
495 InstsToRemove.insert(I);
496 I->replaceAllUsesWith(NewVal);
497 LLVM_DEBUG(dbgs() << "ARM CGP: New equivalent: " << *NewVal << "\n");
499 for (auto *I : NewInsts)
500 Visited->insert(I);
503 void IRPromoter::ExtendSources() {
504 IRBuilder<> Builder{Ctx};
506 auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
507 assert(V->getType() != ExtTy && "zext already extends to i32");
508 LLVM_DEBUG(dbgs() << "ARM CGP: Inserting ZExt for " << *V << "\n");
509 Builder.SetInsertPoint(InsertPt);
510 if (auto *I = dyn_cast<Instruction>(V))
511 Builder.SetCurrentDebugLocation(I->getDebugLoc());
513 Value *ZExt = Builder.CreateZExt(V, ExtTy);
514 if (auto *I = dyn_cast<Instruction>(ZExt)) {
515 if (isa<Argument>(V))
516 I->moveBefore(InsertPt);
517 else
518 I->moveAfter(InsertPt);
519 NewInsts.insert(I);
522 ReplaceAllUsersOfWith(V, ZExt);
525 // Now, insert extending instructions between the sources and their users.
526 LLVM_DEBUG(dbgs() << "ARM CGP: Promoting sources:\n");
527 for (auto V : *Sources) {
528 LLVM_DEBUG(dbgs() << " - " << *V << "\n");
529 if (auto *I = dyn_cast<Instruction>(V))
530 InsertZExt(I, I);
531 else if (auto *Arg = dyn_cast<Argument>(V)) {
532 BasicBlock &BB = Arg->getParent()->front();
533 InsertZExt(Arg, &*BB.getFirstInsertionPt());
534 } else {
535 llvm_unreachable("unhandled source that needs extending");
537 Promoted.insert(V);
541 void IRPromoter::PromoteTree() {
542 LLVM_DEBUG(dbgs() << "ARM CGP: Mutating the tree..\n");
544 IRBuilder<> Builder{Ctx};
546 // Mutate the types of the instructions within the tree. Here we handle
547 // constant operands.
548 for (auto *V : *Visited) {
549 if (Sources->count(V))
550 continue;
552 auto *I = cast<Instruction>(V);
553 if (Sinks->count(I))
554 continue;
556 for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
557 Value *Op = I->getOperand(i);
558 if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
559 continue;
561 if (auto *Const = dyn_cast<ConstantInt>(Op)) {
562 Constant *NewConst = ConstantExpr::getZExt(Const, ExtTy);
563 I->setOperand(i, NewConst);
564 } else if (isa<UndefValue>(Op))
565 I->setOperand(i, UndefValue::get(ExtTy));
568 if (shouldPromote(I)) {
569 I->mutateType(ExtTy);
570 Promoted.insert(I);
574 // Finally, any instructions that should be promoted but haven't yet been,
575 // need to be handled using intrinsics.
576 for (auto *V : *Visited) {
577 auto *I = dyn_cast<Instruction>(V);
578 if (!I)
579 continue;
581 if (Sources->count(I) || Sinks->count(I))
582 continue;
584 if (!shouldPromote(I) || SafeToPromote->count(I) || NewInsts.count(I))
585 continue;
587 assert(EnableDSP && "DSP intrinisc insertion not enabled!");
589 // Replace unsafe instructions with appropriate intrinsic calls.
590 LLVM_DEBUG(dbgs() << "ARM CGP: Inserting DSP intrinsic for "
591 << *I << "\n");
592 Function *DSPInst =
593 Intrinsic::getDeclaration(M, getNarrowIntrinsic(I));
594 Builder.SetInsertPoint(I);
595 Builder.SetCurrentDebugLocation(I->getDebugLoc());
596 Value *Args[] = { I->getOperand(0), I->getOperand(1) };
597 CallInst *Call = Builder.CreateCall(DSPInst, Args);
598 NewInsts.insert(Call);
599 ReplaceAllUsersOfWith(I, Call);
603 void IRPromoter::TruncateSinks() {
604 LLVM_DEBUG(dbgs() << "ARM CGP: Fixing up the sinks:\n");
606 IRBuilder<> Builder{Ctx};
608 auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction* {
609 if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
610 return nullptr;
612 if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources->count(V))
613 return nullptr;
615 LLVM_DEBUG(dbgs() << "ARM CGP: Creating " << *TruncTy << " Trunc for "
616 << *V << "\n");
617 Builder.SetInsertPoint(cast<Instruction>(V));
618 auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
619 if (Trunc)
620 NewInsts.insert(Trunc);
621 return Trunc;
624 // Fix up any stores or returns that use the results of the promoted
625 // chain.
626 for (auto I : *Sinks) {
627 LLVM_DEBUG(dbgs() << "ARM CGP: For Sink: " << *I << "\n");
629 // Handle calls separately as we need to iterate over arg operands.
630 if (auto *Call = dyn_cast<CallInst>(I)) {
631 for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
632 Value *Arg = Call->getArgOperand(i);
633 Type *Ty = TruncTysMap[Call][i];
634 if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
635 Trunc->moveBefore(Call);
636 Call->setArgOperand(i, Trunc);
639 continue;
642 // Special case switches because we need to truncate the condition.
643 if (auto *Switch = dyn_cast<SwitchInst>(I)) {
644 Type *Ty = TruncTysMap[Switch][0];
645 if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
646 Trunc->moveBefore(Switch);
647 Switch->setCondition(Trunc);
649 continue;
652 // Now handle the others.
653 for (unsigned i = 0; i < I->getNumOperands(); ++i) {
654 Type *Ty = TruncTysMap[I][i];
655 if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
656 Trunc->moveBefore(I);
657 I->setOperand(i, Trunc);
663 void IRPromoter::Cleanup() {
664 LLVM_DEBUG(dbgs() << "ARM CGP: Cleanup..\n");
665 // Some zexts will now have become redundant, along with their trunc
666 // operands, so remove them
667 for (auto V : *Visited) {
668 if (!isa<ZExtInst>(V))
669 continue;
671 auto ZExt = cast<ZExtInst>(V);
672 if (ZExt->getDestTy() != ExtTy)
673 continue;
675 Value *Src = ZExt->getOperand(0);
676 if (ZExt->getSrcTy() == ZExt->getDestTy()) {
677 LLVM_DEBUG(dbgs() << "ARM CGP: Removing unnecessary cast: " << *ZExt
678 << "\n");
679 ReplaceAllUsersOfWith(ZExt, Src);
680 continue;
683 // Unless they produce a value that is narrower than ExtTy, we can
684 // replace the result of the zext with the input of a newly inserted
685 // trunc.
686 if (NewInsts.count(Src) && isa<TruncInst>(Src) &&
687 Src->getType() == OrigTy) {
688 auto *Trunc = cast<TruncInst>(Src);
689 assert(Trunc->getOperand(0)->getType() == ExtTy &&
690 "expected inserted trunc to be operating on i32");
691 ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
695 for (auto *I : InstsToRemove) {
696 LLVM_DEBUG(dbgs() << "ARM CGP: Removing " << *I << "\n");
697 I->dropAllReferences();
698 I->eraseFromParent();
701 InstsToRemove.clear();
702 NewInsts.clear();
703 TruncTysMap.clear();
704 Promoted.clear();
705 SafeToPromote->clear();
706 SafeWrap->clear();
709 void IRPromoter::ConvertTruncs() {
710 LLVM_DEBUG(dbgs() << "ARM CGP: Converting truncs..\n");
711 IRBuilder<> Builder{Ctx};
713 for (auto *V : *Visited) {
714 if (!isa<TruncInst>(V) || Sources->count(V))
715 continue;
717 auto *Trunc = cast<TruncInst>(V);
718 Builder.SetInsertPoint(Trunc);
719 IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
720 IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
722 unsigned NumBits = DestTy->getScalarSizeInBits();
723 ConstantInt *Mask =
724 ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
725 Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
727 if (auto *I = dyn_cast<Instruction>(Masked))
728 NewInsts.insert(I);
730 ReplaceAllUsersOfWith(Trunc, Masked);
734 void IRPromoter::Mutate(Type *OrigTy,
735 SetVector<Value*> &Visited,
736 SmallPtrSetImpl<Value*> &Sources,
737 SmallPtrSetImpl<Instruction*> &Sinks,
738 SmallPtrSetImpl<Instruction*> &SafeToPromote,
739 SmallPtrSetImpl<Instruction*> &SafeWrap) {
740 LLVM_DEBUG(dbgs() << "ARM CGP: Promoting use-def chains to from "
741 << ARMCodeGenPrepare::TypeSize << " to 32-bits\n");
743 assert(isa<IntegerType>(OrigTy) && "expected integer type");
744 this->OrigTy = cast<IntegerType>(OrigTy);
745 assert(OrigTy->getPrimitiveSizeInBits() < ExtTy->getPrimitiveSizeInBits() &&
746 "original type not smaller than extended type");
748 this->Visited = &Visited;
749 this->Sources = &Sources;
750 this->Sinks = &Sinks;
751 this->SafeToPromote = &SafeToPromote;
752 this->SafeWrap = &SafeWrap;
754 // Cache original types of the values that will likely need truncating
755 for (auto *I : Sinks) {
756 if (auto *Call = dyn_cast<CallInst>(I)) {
757 for (unsigned i = 0; i < Call->getNumArgOperands(); ++i) {
758 Value *Arg = Call->getArgOperand(i);
759 TruncTysMap[Call].push_back(Arg->getType());
761 } else if (auto *Switch = dyn_cast<SwitchInst>(I))
762 TruncTysMap[I].push_back(Switch->getCondition()->getType());
763 else {
764 for (unsigned i = 0; i < I->getNumOperands(); ++i)
765 TruncTysMap[I].push_back(I->getOperand(i)->getType());
768 for (auto *V : Visited) {
769 if (!isa<TruncInst>(V) || Sources.count(V))
770 continue;
771 auto *Trunc = cast<TruncInst>(V);
772 TruncTysMap[Trunc].push_back(Trunc->getDestTy());
775 // Convert adds using negative immediates to equivalent instructions that use
776 // positive constants.
777 PrepareWrappingAdds();
779 // Insert zext instructions between sources and their users.
780 ExtendSources();
782 // Promote visited instructions, mutating their types in place. Also insert
783 // DSP intrinsics, if enabled, for adds and subs which would be unsafe to
784 // promote.
785 PromoteTree();
787 // Convert any truncs, that aren't sources, into AND masks.
788 ConvertTruncs();
790 // Insert trunc instructions for use by calls, stores etc...
791 TruncateSinks();
793 // Finally, remove unecessary zexts and truncs, delete old instructions and
794 // clear the data structures.
795 Cleanup();
797 LLVM_DEBUG(dbgs() << "ARM CGP: Mutation complete\n");
800 /// We accept most instructions, as well as Arguments and ConstantInsts. We
801 /// Disallow casts other than zext and truncs and only allow calls if their
802 /// return value is zeroext. We don't allow opcodes that can introduce sign
803 /// bits.
804 bool ARMCodeGenPrepare::isSupportedValue(Value *V) {
805 if (auto *I = dyn_cast<Instruction>(V)) {
806 switch (I->getOpcode()) {
807 default:
808 return isa<BinaryOperator>(I) && isSupportedType(I) &&
809 !GenerateSignBits(I);
810 case Instruction::GetElementPtr:
811 case Instruction::Store:
812 case Instruction::Br:
813 case Instruction::Switch:
814 return true;
815 case Instruction::PHI:
816 case Instruction::Select:
817 case Instruction::Ret:
818 case Instruction::Load:
819 case Instruction::Trunc:
820 case Instruction::BitCast:
821 return isSupportedType(I);
822 case Instruction::ZExt:
823 return isSupportedType(I->getOperand(0));
824 case Instruction::ICmp:
825 // Now that we allow small types than TypeSize, only allow icmp of
826 // TypeSize because they will require a trunc to be legalised.
827 // TODO: Allow icmp of smaller types, and calculate at the end
828 // whether the transform would be beneficial.
829 if (isa<PointerType>(I->getOperand(0)->getType()))
830 return true;
831 return EqualTypeSize(I->getOperand(0));
832 case Instruction::Call: {
833 // Special cases for calls as we need to check for zeroext
834 // TODO We should accept calls even if they don't have zeroext, as they
835 // can still be sinks.
836 auto *Call = cast<CallInst>(I);
837 return isSupportedType(Call) &&
838 Call->hasRetAttr(Attribute::AttrKind::ZExt);
841 } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
842 return isSupportedType(V);
843 } else if (isa<Argument>(V))
844 return isSupportedType(V);
846 return isa<BasicBlock>(V);
849 /// Check that the type of V would be promoted and that the original type is
850 /// smaller than the targeted promoted type. Check that we're not trying to
851 /// promote something larger than our base 'TypeSize' type.
852 bool ARMCodeGenPrepare::isLegalToPromote(Value *V) {
854 auto *I = dyn_cast<Instruction>(V);
855 if (!I)
856 return true;
858 if (SafeToPromote.count(I))
859 return true;
861 if (isPromotedResultSafe(V) || isSafeWrap(I)) {
862 SafeToPromote.insert(I);
863 return true;
866 if (I->getOpcode() != Instruction::Add && I->getOpcode() != Instruction::Sub)
867 return false;
869 // If promotion is not safe, can we use a DSP instruction to natively
870 // handle the narrow type?
871 if (!ST->hasDSP() || !EnableDSP || !isSupportedType(I))
872 return false;
874 if (ST->isThumb() && !ST->hasThumb2())
875 return false;
877 // TODO
878 // Would it be profitable? For Thumb code, these parallel DSP instructions
879 // are only Thumb-2, so we wouldn't be able to dual issue on Cortex-M33. For
880 // Cortex-A, specifically Cortex-A72, the latency is double and throughput is
881 // halved. They also do not take immediates as operands.
882 for (auto &Op : I->operands()) {
883 if (isa<Constant>(Op)) {
884 if (!EnableDSPWithImms)
885 return false;
888 LLVM_DEBUG(dbgs() << "ARM CGP: Will use an intrinsic for: " << *I << "\n");
889 return true;
892 bool ARMCodeGenPrepare::TryToPromote(Value *V) {
893 OrigTy = V->getType();
894 TypeSize = OrigTy->getPrimitiveSizeInBits();
895 if (TypeSize > 16 || TypeSize < 8)
896 return false;
898 SafeToPromote.clear();
899 SafeWrap.clear();
901 if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
902 return false;
904 LLVM_DEBUG(dbgs() << "ARM CGP: TryToPromote: " << *V << ", TypeSize = "
905 << TypeSize << "\n");
907 SetVector<Value*> WorkList;
908 SmallPtrSet<Value*, 8> Sources;
909 SmallPtrSet<Instruction*, 4> Sinks;
910 SetVector<Value*> CurrentVisited;
911 WorkList.insert(V);
913 // Return true if V was added to the worklist as a supported instruction,
914 // if it was already visited, or if we don't need to explore it (e.g.
915 // pointer values and GEPs), and false otherwise.
916 auto AddLegalInst = [&](Value *V) {
917 if (CurrentVisited.count(V))
918 return true;
920 // Ignore GEPs because they don't need promoting and the constant indices
921 // will prevent the transformation.
922 if (isa<GetElementPtrInst>(V))
923 return true;
925 if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
926 LLVM_DEBUG(dbgs() << "ARM CGP: Can't handle: " << *V << "\n");
927 return false;
930 WorkList.insert(V);
931 return true;
934 // Iterate through, and add to, a tree of operands and users in the use-def.
935 while (!WorkList.empty()) {
936 Value *V = WorkList.back();
937 WorkList.pop_back();
938 if (CurrentVisited.count(V))
939 continue;
941 // Ignore non-instructions, other than arguments.
942 if (!isa<Instruction>(V) && !isSource(V))
943 continue;
945 // If we've already visited this value from somewhere, bail now because
946 // the tree has already been explored.
947 // TODO: This could limit the transform, ie if we try to promote something
948 // from an i8 and fail first, before trying an i16.
949 if (AllVisited.count(V))
950 return false;
952 CurrentVisited.insert(V);
953 AllVisited.insert(V);
955 // Calls can be both sources and sinks.
956 if (isSink(V))
957 Sinks.insert(cast<Instruction>(V));
959 if (isSource(V))
960 Sources.insert(V);
962 if (!isSink(V) && !isSource(V)) {
963 if (auto *I = dyn_cast<Instruction>(V)) {
964 // Visit operands of any instruction visited.
965 for (auto &U : I->operands()) {
966 if (!AddLegalInst(U))
967 return false;
972 // Don't visit users of a node which isn't going to be mutated unless its a
973 // source.
974 if (isSource(V) || shouldPromote(V)) {
975 for (Use &U : V->uses()) {
976 if (!AddLegalInst(U.getUser()))
977 return false;
982 LLVM_DEBUG(dbgs() << "ARM CGP: Visited nodes:\n";
983 for (auto *I : CurrentVisited)
984 I->dump();
986 unsigned ToPromote = 0;
987 for (auto *V : CurrentVisited) {
988 if (Sources.count(V))
989 continue;
990 if (Sinks.count(cast<Instruction>(V)))
991 continue;
992 ++ToPromote;
995 if (ToPromote < 2)
996 return false;
998 Promoter->Mutate(OrigTy, CurrentVisited, Sources, Sinks, SafeToPromote,
999 SafeWrap);
1000 return true;
1003 bool ARMCodeGenPrepare::doInitialization(Module &M) {
1004 Promoter = new IRPromoter(&M);
1005 return false;
1008 bool ARMCodeGenPrepare::runOnFunction(Function &F) {
1009 if (skipFunction(F) || DisableCGP)
1010 return false;
1012 auto *TPC = &getAnalysis<TargetPassConfig>();
1013 if (!TPC)
1014 return false;
1016 const TargetMachine &TM = TPC->getTM<TargetMachine>();
1017 ST = &TM.getSubtarget<ARMSubtarget>(F);
1018 bool MadeChange = false;
1019 LLVM_DEBUG(dbgs() << "ARM CGP: Running on " << F.getName() << "\n");
1021 // Search up from icmps to try to promote their operands.
1022 for (BasicBlock &BB : F) {
1023 auto &Insts = BB.getInstList();
1024 for (auto &I : Insts) {
1025 if (AllVisited.count(&I))
1026 continue;
1028 if (isa<ICmpInst>(I)) {
1029 auto &CI = cast<ICmpInst>(I);
1031 // Skip signed or pointer compares
1032 if (CI.isSigned() || !isa<IntegerType>(CI.getOperand(0)->getType()))
1033 continue;
1035 LLVM_DEBUG(dbgs() << "ARM CGP: Searching from: " << CI << "\n");
1037 for (auto &Op : CI.operands()) {
1038 if (auto *I = dyn_cast<Instruction>(Op))
1039 MadeChange |= TryToPromote(I);
1043 LLVM_DEBUG(if (verifyFunction(F, &dbgs())) {
1044 dbgs() << F;
1045 report_fatal_error("Broken function after type promotion");
1048 if (MadeChange)
1049 LLVM_DEBUG(dbgs() << "After ARMCodeGenPrepare: " << F << "\n");
1051 return MadeChange;
1054 bool ARMCodeGenPrepare::doFinalization(Module &M) {
1055 delete Promoter;
1056 return false;
1059 INITIALIZE_PASS_BEGIN(ARMCodeGenPrepare, DEBUG_TYPE,
1060 "ARM IR optimizations", false, false)
1061 INITIALIZE_PASS_END(ARMCodeGenPrepare, DEBUG_TYPE, "ARM IR optimizations",
1062 false, false)
1064 char ARMCodeGenPrepare::ID = 0;
1065 unsigned ARMCodeGenPrepare::TypeSize = 0;
1067 FunctionPass *llvm::createARMCodeGenPreparePass() {
1068 return new ARMCodeGenPrepare();