Run DCE after a LoopFlatten test to reduce spurious output [nfc]
[llvm-project.git] / llvm / lib / Target / RISCV / MCTargetDesc / RISCVBaseInfo.cpp
blobedcca8805dfc01bcd953e99b8a1c10ddb8adf2f3
1 //===-- RISCVBaseInfo.cpp - Top level definitions for RISC-V MC -----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains small standalone enum definitions for the RISC-V target
10 // useful for the compiler back-end and the MC libraries.
12 //===----------------------------------------------------------------------===//
14 #include "RISCVBaseInfo.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/MC/MCInst.h"
17 #include "llvm/MC/MCRegisterInfo.h"
18 #include "llvm/MC/MCSubtargetInfo.h"
19 #include "llvm/Support/RISCVISAInfo.h"
20 #include "llvm/Support/raw_ostream.h"
21 #include "llvm/TargetParser/TargetParser.h"
22 #include "llvm/TargetParser/Triple.h"
24 namespace llvm {
26 extern const SubtargetFeatureKV RISCVFeatureKV[RISCV::NumSubtargetFeatures];
28 namespace RISCVSysReg {
29 #define GET_SysRegsList_IMPL
30 #define GET_SiFiveRegsList_IMPL
31 #include "RISCVGenSearchableTables.inc"
32 } // namespace RISCVSysReg
34 namespace RISCVInsnOpcode {
35 #define GET_RISCVOpcodesList_IMPL
36 #include "RISCVGenSearchableTables.inc"
37 } // namespace RISCVInsnOpcode
39 namespace RISCVABI {
40 ABI computeTargetABI(const Triple &TT, const FeatureBitset &FeatureBits,
41 StringRef ABIName) {
42 auto TargetABI = getTargetABI(ABIName);
43 bool IsRV64 = TT.isArch64Bit();
44 bool IsRVE = FeatureBits[RISCV::FeatureRVE];
46 if (!ABIName.empty() && TargetABI == ABI_Unknown) {
47 errs()
48 << "'" << ABIName
49 << "' is not a recognized ABI for this target (ignoring target-abi)\n";
50 } else if (ABIName.startswith("ilp32") && IsRV64) {
51 errs() << "32-bit ABIs are not supported for 64-bit targets (ignoring "
52 "target-abi)\n";
53 TargetABI = ABI_Unknown;
54 } else if (ABIName.startswith("lp64") && !IsRV64) {
55 errs() << "64-bit ABIs are not supported for 32-bit targets (ignoring "
56 "target-abi)\n";
57 TargetABI = ABI_Unknown;
58 } else if (!IsRV64 && IsRVE && TargetABI != ABI_ILP32E &&
59 TargetABI != ABI_Unknown) {
60 // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
61 errs()
62 << "Only the ilp32e ABI is supported for RV32E (ignoring target-abi)\n";
63 TargetABI = ABI_Unknown;
64 } else if (IsRV64 && IsRVE && TargetABI != ABI_LP64E &&
65 TargetABI != ABI_Unknown) {
66 // TODO: move this checking to RISCVTargetLowering and RISCVAsmParser
67 errs()
68 << "Only the lp64e ABI is supported for RV64E (ignoring target-abi)\n";
69 TargetABI = ABI_Unknown;
72 if (TargetABI != ABI_Unknown)
73 return TargetABI;
75 // If no explicit ABI is given, try to compute the default ABI.
76 auto ISAInfo = RISCVFeatures::parseFeatureBits(IsRV64, FeatureBits);
77 if (!ISAInfo)
78 report_fatal_error(ISAInfo.takeError());
79 return getTargetABI((*ISAInfo)->computeDefaultABI());
82 ABI getTargetABI(StringRef ABIName) {
83 auto TargetABI = StringSwitch<ABI>(ABIName)
84 .Case("ilp32", ABI_ILP32)
85 .Case("ilp32f", ABI_ILP32F)
86 .Case("ilp32d", ABI_ILP32D)
87 .Case("ilp32e", ABI_ILP32E)
88 .Case("lp64", ABI_LP64)
89 .Case("lp64f", ABI_LP64F)
90 .Case("lp64d", ABI_LP64D)
91 .Case("lp64e", ABI_LP64E)
92 .Default(ABI_Unknown);
93 return TargetABI;
96 // To avoid the BP value clobbered by a function call, we need to choose a
97 // callee saved register to save the value. RV32E only has X8 and X9 as callee
98 // saved registers and X8 will be used as fp. So we choose X9 as bp.
99 MCRegister getBPReg() { return RISCV::X9; }
101 // Returns the register holding shadow call stack pointer.
102 MCRegister getSCSPReg() { return RISCV::X3; }
104 } // namespace RISCVABI
106 namespace RISCVFeatures {
108 void validate(const Triple &TT, const FeatureBitset &FeatureBits) {
109 if (TT.isArch64Bit() && !FeatureBits[RISCV::Feature64Bit])
110 report_fatal_error("RV64 target requires an RV64 CPU");
111 if (!TT.isArch64Bit() && !FeatureBits[RISCV::Feature32Bit])
112 report_fatal_error("RV32 target requires an RV32 CPU");
113 if (FeatureBits[RISCV::Feature32Bit] &&
114 FeatureBits[RISCV::Feature64Bit])
115 report_fatal_error("RV32 and RV64 can't be combined");
118 llvm::Expected<std::unique_ptr<RISCVISAInfo>>
119 parseFeatureBits(bool IsRV64, const FeatureBitset &FeatureBits) {
120 unsigned XLen = IsRV64 ? 64 : 32;
121 std::vector<std::string> FeatureVector;
122 // Convert FeatureBitset to FeatureVector.
123 for (auto Feature : RISCVFeatureKV) {
124 if (FeatureBits[Feature.Value] &&
125 llvm::RISCVISAInfo::isSupportedExtensionFeature(Feature.Key))
126 FeatureVector.push_back(std::string("+") + Feature.Key);
128 return llvm::RISCVISAInfo::parseFeatures(XLen, FeatureVector);
131 } // namespace RISCVFeatures
133 // Encode VTYPE into the binary format used by the the VSETVLI instruction which
134 // is used by our MC layer representation.
136 // Bits | Name | Description
137 // -----+------------+------------------------------------------------
138 // 7 | vma | Vector mask agnostic
139 // 6 | vta | Vector tail agnostic
140 // 5:3 | vsew[2:0] | Standard element width (SEW) setting
141 // 2:0 | vlmul[2:0] | Vector register group multiplier (LMUL) setting
142 unsigned RISCVVType::encodeVTYPE(RISCVII::VLMUL VLMUL, unsigned SEW,
143 bool TailAgnostic, bool MaskAgnostic) {
144 assert(isValidSEW(SEW) && "Invalid SEW");
145 unsigned VLMULBits = static_cast<unsigned>(VLMUL);
146 unsigned VSEWBits = encodeSEW(SEW);
147 unsigned VTypeI = (VSEWBits << 3) | (VLMULBits & 0x7);
148 if (TailAgnostic)
149 VTypeI |= 0x40;
150 if (MaskAgnostic)
151 VTypeI |= 0x80;
153 return VTypeI;
156 std::pair<unsigned, bool> RISCVVType::decodeVLMUL(RISCVII::VLMUL VLMUL) {
157 switch (VLMUL) {
158 default:
159 llvm_unreachable("Unexpected LMUL value!");
160 case RISCVII::VLMUL::LMUL_1:
161 case RISCVII::VLMUL::LMUL_2:
162 case RISCVII::VLMUL::LMUL_4:
163 case RISCVII::VLMUL::LMUL_8:
164 return std::make_pair(1 << static_cast<unsigned>(VLMUL), false);
165 case RISCVII::VLMUL::LMUL_F2:
166 case RISCVII::VLMUL::LMUL_F4:
167 case RISCVII::VLMUL::LMUL_F8:
168 return std::make_pair(1 << (8 - static_cast<unsigned>(VLMUL)), true);
172 void RISCVVType::printVType(unsigned VType, raw_ostream &OS) {
173 unsigned Sew = getSEW(VType);
174 OS << "e" << Sew;
176 unsigned LMul;
177 bool Fractional;
178 std::tie(LMul, Fractional) = decodeVLMUL(getVLMUL(VType));
180 if (Fractional)
181 OS << ", mf";
182 else
183 OS << ", m";
184 OS << LMul;
186 if (isTailAgnostic(VType))
187 OS << ", ta";
188 else
189 OS << ", tu";
191 if (isMaskAgnostic(VType))
192 OS << ", ma";
193 else
194 OS << ", mu";
197 unsigned RISCVVType::getSEWLMULRatio(unsigned SEW, RISCVII::VLMUL VLMul) {
198 unsigned LMul;
199 bool Fractional;
200 std::tie(LMul, Fractional) = decodeVLMUL(VLMul);
202 // Convert LMul to a fixed point value with 3 fractional bits.
203 LMul = Fractional ? (8 / LMul) : (LMul * 8);
205 assert(SEW >= 8 && "Unexpected SEW value");
206 return (SEW * 8) / LMul;
209 std::optional<RISCVII::VLMUL>
210 RISCVVType::getSameRatioLMUL(unsigned SEW, RISCVII::VLMUL VLMUL, unsigned EEW) {
211 unsigned Ratio = RISCVVType::getSEWLMULRatio(SEW, VLMUL);
212 unsigned EMULFixedPoint = (EEW * 8) / Ratio;
213 bool Fractional = EMULFixedPoint < 8;
214 unsigned EMUL = Fractional ? 8 / EMULFixedPoint : EMULFixedPoint / 8;
215 if (!isValidLMUL(EMUL, Fractional))
216 return std::nullopt;
217 return RISCVVType::encodeLMUL(EMUL, Fractional);
220 // Include the auto-generated portion of the compress emitter.
221 #define GEN_UNCOMPRESS_INSTR
222 #define GEN_COMPRESS_INSTR
223 #include "RISCVGenCompressInstEmitter.inc"
225 bool RISCVRVC::compress(MCInst &OutInst, const MCInst &MI,
226 const MCSubtargetInfo &STI) {
227 return compressInst(OutInst, MI, STI);
230 bool RISCVRVC::uncompress(MCInst &OutInst, const MCInst &MI,
231 const MCSubtargetInfo &STI) {
232 return uncompressInst(OutInst, MI, STI);
235 // Lookup table for fli.s for entries 2-31.
236 static constexpr std::pair<uint8_t, uint8_t> LoadFP32ImmArr[] = {
237 {0b01101111, 0b00}, {0b01110000, 0b00}, {0b01110111, 0b00},
238 {0b01111000, 0b00}, {0b01111011, 0b00}, {0b01111100, 0b00},
239 {0b01111101, 0b00}, {0b01111101, 0b01}, {0b01111101, 0b10},
240 {0b01111101, 0b11}, {0b01111110, 0b00}, {0b01111110, 0b01},
241 {0b01111110, 0b10}, {0b01111110, 0b11}, {0b01111111, 0b00},
242 {0b01111111, 0b01}, {0b01111111, 0b10}, {0b01111111, 0b11},
243 {0b10000000, 0b00}, {0b10000000, 0b01}, {0b10000000, 0b10},
244 {0b10000001, 0b00}, {0b10000010, 0b00}, {0b10000011, 0b00},
245 {0b10000110, 0b00}, {0b10000111, 0b00}, {0b10001110, 0b00},
246 {0b10001111, 0b00}, {0b11111111, 0b00}, {0b11111111, 0b10},
249 int RISCVLoadFPImm::getLoadFPImm(APFloat FPImm) {
250 assert((&FPImm.getSemantics() == &APFloat::IEEEsingle() ||
251 &FPImm.getSemantics() == &APFloat::IEEEdouble() ||
252 &FPImm.getSemantics() == &APFloat::IEEEhalf()) &&
253 "Unexpected semantics");
255 // Handle the minimum normalized value which is different for each type.
256 if (FPImm.isSmallestNormalized() && !FPImm.isNegative())
257 return 1;
259 // Convert to single precision to use its lookup table.
260 bool LosesInfo;
261 APFloat::opStatus Status = FPImm.convert(
262 APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, &LosesInfo);
263 if (Status != APFloat::opOK || LosesInfo)
264 return -1;
266 APInt Imm = FPImm.bitcastToAPInt();
268 if (Imm.extractBitsAsZExtValue(21, 0) != 0)
269 return -1;
271 bool Sign = Imm.extractBitsAsZExtValue(1, 31);
272 uint8_t Mantissa = Imm.extractBitsAsZExtValue(2, 21);
273 uint8_t Exp = Imm.extractBitsAsZExtValue(8, 23);
275 auto EMI = llvm::lower_bound(LoadFP32ImmArr, std::make_pair(Exp, Mantissa));
276 if (EMI == std::end(LoadFP32ImmArr) || EMI->first != Exp ||
277 EMI->second != Mantissa)
278 return -1;
280 // Table doesn't have entry 0 or 1.
281 int Entry = std::distance(std::begin(LoadFP32ImmArr), EMI) + 2;
283 // The only legal negative value is -1.0(entry 0). 1.0 is entry 16.
284 if (Sign) {
285 if (Entry == 16)
286 return 0;
287 return -1;
290 return Entry;
293 float RISCVLoadFPImm::getFPImm(unsigned Imm) {
294 assert(Imm != 1 && Imm != 30 && Imm != 31 && "Unsupported immediate");
296 // Entry 0 is -1.0, the only negative value. Entry 16 is 1.0.
297 uint32_t Sign = 0;
298 if (Imm == 0) {
299 Sign = 0b1;
300 Imm = 16;
303 uint32_t Exp = LoadFP32ImmArr[Imm - 2].first;
304 uint32_t Mantissa = LoadFP32ImmArr[Imm - 2].second;
306 uint32_t I = Sign << 31 | Exp << 23 | Mantissa << 21;
307 return bit_cast<float>(I);
310 void RISCVZC::printRlist(unsigned SlistEncode, raw_ostream &OS) {
311 OS << "{ra";
312 if (SlistEncode > 4) {
313 OS << ", s0";
314 if (SlistEncode == 15)
315 OS << "-s11";
316 else if (SlistEncode > 5 && SlistEncode <= 14)
317 OS << "-s" << (SlistEncode - 5);
319 OS << "}";
322 void RISCVZC::printSpimm(int64_t Spimm, raw_ostream &OS) { OS << Spimm; }
324 } // namespace llvm