[AMDGPU] Add True16 register classes.
[llvm-project.git] / clang / unittests / Interpreter / InterpreterTest.cpp
blob62e5bacbdd0b6d8c10608ac0fbdb1bf4c5872729
1 //===- unittests/Interpreter/InterpreterTest.cpp --- Interpreter tests ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Unit tests for Clang's Interpreter library.
11 //===----------------------------------------------------------------------===//
13 #include "clang/Interpreter/Interpreter.h"
15 #include "clang/AST/Decl.h"
16 #include "clang/AST/DeclGroup.h"
17 #include "clang/AST/Mangle.h"
18 #include "clang/Frontend/CompilerInstance.h"
19 #include "clang/Frontend/TextDiagnosticPrinter.h"
20 #include "clang/Interpreter/Value.h"
21 #include "clang/Sema/Lookup.h"
22 #include "clang/Sema/Sema.h"
24 #include "llvm/ExecutionEngine/Orc/LLJIT.h"
25 #include "llvm/Support/ManagedStatic.h"
26 #include "llvm/Support/TargetSelect.h"
28 #include "gmock/gmock.h"
29 #include "gtest/gtest.h"
31 using namespace clang;
33 #if defined(_AIX)
34 #define CLANG_INTERPRETER_NO_SUPPORT_EXEC
35 #endif
37 int Global = 42;
38 // JIT reports symbol not found on Windows without the visibility attribute.
39 REPL_EXTERNAL_VISIBILITY int getGlobal() { return Global; }
40 REPL_EXTERNAL_VISIBILITY void setGlobal(int val) { Global = val; }
42 namespace {
43 using Args = std::vector<const char *>;
44 static std::unique_ptr<Interpreter>
45 createInterpreter(const Args &ExtraArgs = {},
46 DiagnosticConsumer *Client = nullptr) {
47 Args ClangArgs = {"-Xclang", "-emit-llvm-only"};
48 ClangArgs.insert(ClangArgs.end(), ExtraArgs.begin(), ExtraArgs.end());
49 auto CB = clang::IncrementalCompilerBuilder();
50 CB.SetCompilerArgs(ClangArgs);
51 auto CI = cantFail(CB.CreateCpp());
52 if (Client)
53 CI->getDiagnostics().setClient(Client, /*ShouldOwnClient=*/false);
54 return cantFail(clang::Interpreter::create(std::move(CI)));
57 static size_t DeclsSize(TranslationUnitDecl *PTUDecl) {
58 return std::distance(PTUDecl->decls().begin(), PTUDecl->decls().end());
61 TEST(InterpreterTest, Sanity) {
62 std::unique_ptr<Interpreter> Interp = createInterpreter();
64 using PTU = PartialTranslationUnit;
66 PTU &R1(cantFail(Interp->Parse("void g(); void g() {}")));
67 EXPECT_EQ(2U, DeclsSize(R1.TUPart));
69 PTU &R2(cantFail(Interp->Parse("int i;")));
70 EXPECT_EQ(1U, DeclsSize(R2.TUPart));
73 static std::string DeclToString(Decl *D) {
74 return llvm::cast<NamedDecl>(D)->getQualifiedNameAsString();
77 TEST(InterpreterTest, IncrementalInputTopLevelDecls) {
78 std::unique_ptr<Interpreter> Interp = createInterpreter();
79 auto R1 = Interp->Parse("int var1 = 42; int f() { return var1; }");
80 // gtest doesn't expand into explicit bool conversions.
81 EXPECT_TRUE(!!R1);
82 auto R1DeclRange = R1->TUPart->decls();
83 EXPECT_EQ(2U, DeclsSize(R1->TUPart));
84 EXPECT_EQ("var1", DeclToString(*R1DeclRange.begin()));
85 EXPECT_EQ("f", DeclToString(*(++R1DeclRange.begin())));
87 auto R2 = Interp->Parse("int var2 = f();");
88 EXPECT_TRUE(!!R2);
89 auto R2DeclRange = R2->TUPart->decls();
90 EXPECT_EQ(1U, DeclsSize(R2->TUPart));
91 EXPECT_EQ("var2", DeclToString(*R2DeclRange.begin()));
94 TEST(InterpreterTest, Errors) {
95 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
97 // Create the diagnostic engine with unowned consumer.
98 std::string DiagnosticOutput;
99 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
100 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
101 DiagnosticsOS, new DiagnosticOptions());
103 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
104 auto Err = Interp->Parse("intentional_error v1 = 42; ").takeError();
105 using ::testing::HasSubstr;
106 EXPECT_THAT(DiagnosticsOS.str(),
107 HasSubstr("error: unknown type name 'intentional_error'"));
108 EXPECT_EQ("Parsing failed.", llvm::toString(std::move(Err)));
110 auto RecoverErr = Interp->Parse("int var1 = 42;");
111 EXPECT_TRUE(!!RecoverErr);
114 // Here we test whether the user can mix declarations and statements. The
115 // interpreter should be smart enough to recognize the declarations from the
116 // statements and wrap the latter into a declaration, producing valid code.
117 TEST(InterpreterTest, DeclsAndStatements) {
118 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
120 // Create the diagnostic engine with unowned consumer.
121 std::string DiagnosticOutput;
122 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
123 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
124 DiagnosticsOS, new DiagnosticOptions());
126 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
127 auto R1 = Interp->Parse(
128 "int var1 = 42; extern \"C\" int printf(const char*, ...);");
129 // gtest doesn't expand into explicit bool conversions.
130 EXPECT_TRUE(!!R1);
132 auto *PTU1 = R1->TUPart;
133 EXPECT_EQ(2U, DeclsSize(PTU1));
135 auto R2 = Interp->Parse("var1++; printf(\"var1 value %d\\n\", var1);");
136 EXPECT_TRUE(!!R2);
139 TEST(InterpreterTest, UndoCommand) {
140 Args ExtraArgs = {"-Xclang", "-diagnostic-log-file", "-Xclang", "-"};
142 // Create the diagnostic engine with unowned consumer.
143 std::string DiagnosticOutput;
144 llvm::raw_string_ostream DiagnosticsOS(DiagnosticOutput);
145 auto DiagPrinter = std::make_unique<TextDiagnosticPrinter>(
146 DiagnosticsOS, new DiagnosticOptions());
148 auto Interp = createInterpreter(ExtraArgs, DiagPrinter.get());
150 // Fail to undo.
151 auto Err1 = Interp->Undo();
152 EXPECT_EQ("Operation failed. Too many undos",
153 llvm::toString(std::move(Err1)));
154 auto Err2 = Interp->Parse("int foo = 42;");
155 EXPECT_TRUE(!!Err2);
156 auto Err3 = Interp->Undo(2);
157 EXPECT_EQ("Operation failed. Too many undos",
158 llvm::toString(std::move(Err3)));
160 // Succeed to undo.
161 auto Err4 = Interp->Parse("int x = 42;");
162 EXPECT_TRUE(!!Err4);
163 auto Err5 = Interp->Undo();
164 EXPECT_FALSE(Err5);
165 auto Err6 = Interp->Parse("int x = 24;");
166 EXPECT_TRUE(!!Err6);
167 auto Err7 = Interp->Parse("#define X 42");
168 EXPECT_TRUE(!!Err7);
169 auto Err8 = Interp->Undo();
170 EXPECT_FALSE(Err8);
171 auto Err9 = Interp->Parse("#define X 24");
172 EXPECT_TRUE(!!Err9);
174 // Undo input contains errors.
175 auto Err10 = Interp->Parse("int y = ;");
176 EXPECT_FALSE(!!Err10);
177 EXPECT_EQ("Parsing failed.", llvm::toString(Err10.takeError()));
178 auto Err11 = Interp->Parse("int y = 42;");
179 EXPECT_TRUE(!!Err11);
180 auto Err12 = Interp->Undo();
181 EXPECT_FALSE(Err12);
184 static std::string MangleName(NamedDecl *ND) {
185 ASTContext &C = ND->getASTContext();
186 std::unique_ptr<MangleContext> MangleC(C.createMangleContext());
187 std::string mangledName;
188 llvm::raw_string_ostream RawStr(mangledName);
189 MangleC->mangleName(ND, RawStr);
190 return RawStr.str();
193 static bool HostSupportsJit() {
194 auto J = llvm::orc::LLJITBuilder()
195 .setEnableDebuggerSupport(true)
196 .create();
197 if (J)
198 return true;
199 LLVMConsumeError(llvm::wrap(J.takeError()));
200 return false;
203 struct LLVMInitRAII {
204 LLVMInitRAII() {
205 llvm::InitializeNativeTarget();
206 llvm::InitializeNativeTargetAsmPrinter();
208 ~LLVMInitRAII() { llvm::llvm_shutdown(); }
209 } LLVMInit;
211 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
212 TEST(IncrementalProcessing, DISABLED_FindMangledNameSymbol) {
213 #else
214 TEST(IncrementalProcessing, FindMangledNameSymbol) {
215 #endif
217 std::unique_ptr<Interpreter> Interp = createInterpreter();
219 auto &PTU(cantFail(Interp->Parse("int f(const char*) {return 0;}")));
220 EXPECT_EQ(1U, DeclsSize(PTU.TUPart));
221 auto R1DeclRange = PTU.TUPart->decls();
223 // We cannot execute on the platform.
224 if (!HostSupportsJit()) {
225 return;
228 NamedDecl *FD = cast<FunctionDecl>(*R1DeclRange.begin());
229 // Lower the PTU
230 if (llvm::Error Err = Interp->Execute(PTU)) {
231 // We cannot execute on the platform.
232 consumeError(std::move(Err));
233 return;
236 std::string MangledName = MangleName(FD);
237 auto Addr = Interp->getSymbolAddress(MangledName);
238 EXPECT_FALSE(!Addr);
239 EXPECT_NE(0U, Addr->getValue());
240 GlobalDecl GD(FD);
241 EXPECT_EQ(*Addr, cantFail(Interp->getSymbolAddress(GD)));
242 cantFail(
243 Interp->ParseAndExecute("extern \"C\" int printf(const char*,...);"));
244 Addr = Interp->getSymbolAddress("printf");
245 EXPECT_FALSE(!Addr);
247 // FIXME: Re-enable when we investigate the way we handle dllimports on Win.
248 #ifndef _WIN32
249 EXPECT_EQ((uintptr_t)&printf, Addr->getValue());
250 #endif // _WIN32
253 static void *AllocateObject(TypeDecl *TD, Interpreter &Interp) {
254 std::string Name = TD->getQualifiedNameAsString();
255 const clang::Type *RDTy = TD->getTypeForDecl();
256 clang::ASTContext &C = Interp.getCompilerInstance()->getASTContext();
257 size_t Size = C.getTypeSize(RDTy);
258 void *Addr = malloc(Size);
260 // Tell the interpreter to call the default ctor with this memory. Synthesize:
261 // new (loc) ClassName;
262 static unsigned Counter = 0;
263 std::stringstream SS;
264 SS << "auto _v" << Counter++ << " = "
265 << "new ((void*)"
266 // Windows needs us to prefix the hexadecimal value of a pointer with '0x'.
267 << std::hex << std::showbase << (size_t)Addr << ")" << Name << "();";
269 auto R = Interp.ParseAndExecute(SS.str());
270 if (!R) {
271 free(Addr);
272 return nullptr;
275 return Addr;
278 static NamedDecl *LookupSingleName(Interpreter &Interp, const char *Name) {
279 Sema &SemaRef = Interp.getCompilerInstance()->getSema();
280 ASTContext &C = SemaRef.getASTContext();
281 DeclarationName DeclName = &C.Idents.get(Name);
282 LookupResult R(SemaRef, DeclName, SourceLocation(), Sema::LookupOrdinaryName);
283 SemaRef.LookupName(R, SemaRef.TUScope);
284 assert(!R.empty());
285 return R.getFoundDecl();
288 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
289 TEST(IncrementalProcessing, DISABLED_InstantiateTemplate) {
290 #else
291 TEST(IncrementalProcessing, InstantiateTemplate) {
292 #endif
293 // FIXME: We cannot yet handle delayed template parsing. If we run with
294 // -fdelayed-template-parsing we try adding the newly created decl to the
295 // active PTU which causes an assert.
296 std::vector<const char *> Args = {"-fno-delayed-template-parsing"};
297 std::unique_ptr<Interpreter> Interp = createInterpreter(Args);
299 llvm::cantFail(Interp->Parse("extern \"C\" int printf(const char*,...);"
300 "class A {};"
301 "struct B {"
302 " template<typename T>"
303 " static int callme(T) { return 42; }"
304 "};"));
305 auto &PTU = llvm::cantFail(Interp->Parse("auto _t = &B::callme<A*>;"));
306 auto PTUDeclRange = PTU.TUPart->decls();
307 EXPECT_EQ(1, std::distance(PTUDeclRange.begin(), PTUDeclRange.end()));
309 // We cannot execute on the platform.
310 if (!HostSupportsJit()) {
311 return;
314 // Lower the PTU
315 if (llvm::Error Err = Interp->Execute(PTU)) {
316 // We cannot execute on the platform.
317 consumeError(std::move(Err));
318 return;
321 TypeDecl *TD = cast<TypeDecl>(LookupSingleName(*Interp, "A"));
322 void *NewA = AllocateObject(TD, *Interp);
324 // Find back the template specialization
325 VarDecl *VD = static_cast<VarDecl *>(*PTUDeclRange.begin());
326 UnaryOperator *UO = llvm::cast<UnaryOperator>(VD->getInit());
327 NamedDecl *TmpltSpec = llvm::cast<DeclRefExpr>(UO->getSubExpr())->getDecl();
329 std::string MangledName = MangleName(TmpltSpec);
330 typedef int (*TemplateSpecFn)(void *);
331 auto fn =
332 cantFail(Interp->getSymbolAddress(MangledName)).toPtr<TemplateSpecFn>();
333 EXPECT_EQ(42, fn(NewA));
334 free(NewA);
337 #ifdef CLANG_INTERPRETER_NO_SUPPORT_EXEC
338 TEST(InterpreterTest, DISABLED_Value) {
339 #else
340 TEST(InterpreterTest, Value) {
341 #endif
342 // We cannot execute on the platform.
343 if (!HostSupportsJit())
344 return;
346 std::unique_ptr<Interpreter> Interp = createInterpreter();
348 Value V1;
349 llvm::cantFail(Interp->ParseAndExecute("int x = 42;"));
350 llvm::cantFail(Interp->ParseAndExecute("x", &V1));
351 EXPECT_TRUE(V1.isValid());
352 EXPECT_TRUE(V1.hasValue());
353 EXPECT_EQ(V1.getInt(), 42);
354 EXPECT_EQ(V1.convertTo<int>(), 42);
355 EXPECT_TRUE(V1.getType()->isIntegerType());
356 EXPECT_EQ(V1.getKind(), Value::K_Int);
357 EXPECT_FALSE(V1.isManuallyAlloc());
359 Value V2;
360 llvm::cantFail(Interp->ParseAndExecute("double y = 3.14;"));
361 llvm::cantFail(Interp->ParseAndExecute("y", &V2));
362 EXPECT_TRUE(V2.isValid());
363 EXPECT_TRUE(V2.hasValue());
364 EXPECT_EQ(V2.getDouble(), 3.14);
365 EXPECT_EQ(V2.convertTo<double>(), 3.14);
366 EXPECT_TRUE(V2.getType()->isFloatingType());
367 EXPECT_EQ(V2.getKind(), Value::K_Double);
368 EXPECT_FALSE(V2.isManuallyAlloc());
370 Value V3;
371 llvm::cantFail(Interp->ParseAndExecute(
372 "struct S { int* p; S() { p = new int(42); } ~S() { delete p; }};"));
373 llvm::cantFail(Interp->ParseAndExecute("S{}", &V3));
374 EXPECT_TRUE(V3.isValid());
375 EXPECT_TRUE(V3.hasValue());
376 EXPECT_TRUE(V3.getType()->isRecordType());
377 EXPECT_EQ(V3.getKind(), Value::K_PtrOrObj);
378 EXPECT_TRUE(V3.isManuallyAlloc());
380 Value V4;
381 llvm::cantFail(Interp->ParseAndExecute("int getGlobal();"));
382 llvm::cantFail(Interp->ParseAndExecute("void setGlobal(int);"));
383 llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V4));
384 EXPECT_EQ(V4.getInt(), 42);
385 EXPECT_TRUE(V4.getType()->isIntegerType());
387 Value V5;
388 // Change the global from the compiled code.
389 setGlobal(43);
390 llvm::cantFail(Interp->ParseAndExecute("getGlobal()", &V5));
391 EXPECT_EQ(V5.getInt(), 43);
392 EXPECT_TRUE(V5.getType()->isIntegerType());
394 // Change the global from the interpreted code.
395 llvm::cantFail(Interp->ParseAndExecute("setGlobal(44);"));
396 EXPECT_EQ(getGlobal(), 44);
398 Value V6;
399 llvm::cantFail(Interp->ParseAndExecute("void foo() {}"));
400 llvm::cantFail(Interp->ParseAndExecute("foo()", &V6));
401 EXPECT_TRUE(V6.isValid());
402 EXPECT_FALSE(V6.hasValue());
403 EXPECT_TRUE(V6.getType()->isVoidType());
404 EXPECT_EQ(V6.getKind(), Value::K_Void);
405 EXPECT_FALSE(V2.isManuallyAlloc());
407 Value V7;
408 llvm::cantFail(Interp->ParseAndExecute("foo", &V7));
409 EXPECT_TRUE(V7.isValid());
410 EXPECT_TRUE(V7.hasValue());
411 EXPECT_TRUE(V7.getType()->isFunctionProtoType());
412 EXPECT_EQ(V7.getKind(), Value::K_PtrOrObj);
413 EXPECT_FALSE(V7.isManuallyAlloc());
415 Value V8;
416 llvm::cantFail(Interp->ParseAndExecute("struct SS{ void f() {} };"));
417 llvm::cantFail(Interp->ParseAndExecute("&SS::f", &V8));
418 EXPECT_TRUE(V8.isValid());
419 EXPECT_TRUE(V8.hasValue());
420 EXPECT_TRUE(V8.getType()->isMemberFunctionPointerType());
421 EXPECT_EQ(V8.getKind(), Value::K_PtrOrObj);
422 EXPECT_TRUE(V8.isManuallyAlloc());
424 Value V9;
425 llvm::cantFail(Interp->ParseAndExecute("struct A { virtual int f(); };"));
426 llvm::cantFail(
427 Interp->ParseAndExecute("struct B : A { int f() { return 42; }};"));
428 llvm::cantFail(Interp->ParseAndExecute("int (B::*ptr)() = &B::f;"));
429 llvm::cantFail(Interp->ParseAndExecute("ptr", &V9));
430 EXPECT_TRUE(V9.isValid());
431 EXPECT_TRUE(V9.hasValue());
432 EXPECT_TRUE(V9.getType()->isMemberFunctionPointerType());
433 EXPECT_EQ(V9.getKind(), Value::K_PtrOrObj);
434 EXPECT_TRUE(V9.isManuallyAlloc());
436 } // end anonymous namespace