[RISCV] Split regalloc between RVV and other (#72096)
[llvm-project.git] / llvm / lib / Target / X86 / X86FlagsCopyLowering.cpp
blobd2e3c708f59d0ac465140be4ebdf5e4a303ff84d
1 //====- X86FlagsCopyLowering.cpp - Lowers COPY nodes of EFLAGS ------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// Lowers COPY nodes of EFLAGS by directly extracting and preserving individual
11 /// flag bits.
12 ///
13 /// We have to do this by carefully analyzing and rewriting the usage of the
14 /// copied EFLAGS register because there is no general way to rematerialize the
15 /// entire EFLAGS register safely and efficiently. Using `popf` both forces
16 /// dynamic stack adjustment and can create correctness issues due to IF, TF,
17 /// and other non-status flags being overwritten. Using sequences involving
18 /// SAHF don't work on all x86 processors and are often quite slow compared to
19 /// directly testing a single status preserved in its own GPR.
20 ///
21 //===----------------------------------------------------------------------===//
23 #include "X86.h"
24 #include "X86InstrBuilder.h"
25 #include "X86InstrInfo.h"
26 #include "X86Subtarget.h"
27 #include "llvm/ADT/ArrayRef.h"
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/ScopeExit.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineConstantPool.h"
36 #include "llvm/CodeGen/MachineDominators.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineInstr.h"
40 #include "llvm/CodeGen/MachineInstrBuilder.h"
41 #include "llvm/CodeGen/MachineModuleInfo.h"
42 #include "llvm/CodeGen/MachineOperand.h"
43 #include "llvm/CodeGen/MachineRegisterInfo.h"
44 #include "llvm/CodeGen/MachineSSAUpdater.h"
45 #include "llvm/CodeGen/TargetInstrInfo.h"
46 #include "llvm/CodeGen/TargetRegisterInfo.h"
47 #include "llvm/CodeGen/TargetSchedule.h"
48 #include "llvm/CodeGen/TargetSubtargetInfo.h"
49 #include "llvm/IR/DebugLoc.h"
50 #include "llvm/MC/MCSchedule.h"
51 #include "llvm/Pass.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/raw_ostream.h"
55 #include <algorithm>
56 #include <cassert>
57 #include <iterator>
58 #include <utility>
60 using namespace llvm;
62 #define PASS_KEY "x86-flags-copy-lowering"
63 #define DEBUG_TYPE PASS_KEY
65 STATISTIC(NumCopiesEliminated, "Number of copies of EFLAGS eliminated");
66 STATISTIC(NumSetCCsInserted, "Number of setCC instructions inserted");
67 STATISTIC(NumTestsInserted, "Number of test instructions inserted");
68 STATISTIC(NumAddsInserted, "Number of adds instructions inserted");
70 namespace {
72 // Convenient array type for storing registers associated with each condition.
73 using CondRegArray = std::array<unsigned, X86::LAST_VALID_COND + 1>;
75 class X86FlagsCopyLoweringPass : public MachineFunctionPass {
76 public:
77 X86FlagsCopyLoweringPass() : MachineFunctionPass(ID) { }
79 StringRef getPassName() const override { return "X86 EFLAGS copy lowering"; }
80 bool runOnMachineFunction(MachineFunction &MF) override;
81 void getAnalysisUsage(AnalysisUsage &AU) const override;
83 /// Pass identification, replacement for typeid.
84 static char ID;
86 private:
87 MachineRegisterInfo *MRI = nullptr;
88 const X86Subtarget *Subtarget = nullptr;
89 const X86InstrInfo *TII = nullptr;
90 const TargetRegisterInfo *TRI = nullptr;
91 const TargetRegisterClass *PromoteRC = nullptr;
92 MachineDominatorTree *MDT = nullptr;
94 CondRegArray collectCondsInRegs(MachineBasicBlock &MBB,
95 MachineBasicBlock::iterator CopyDefI);
97 Register promoteCondToReg(MachineBasicBlock &MBB,
98 MachineBasicBlock::iterator TestPos,
99 const DebugLoc &TestLoc, X86::CondCode Cond);
100 std::pair<unsigned, bool> getCondOrInverseInReg(
101 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
102 const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs);
103 void insertTest(MachineBasicBlock &MBB, MachineBasicBlock::iterator Pos,
104 const DebugLoc &Loc, unsigned Reg);
106 void rewriteArithmetic(MachineBasicBlock &TestMBB,
107 MachineBasicBlock::iterator TestPos,
108 const DebugLoc &TestLoc, MachineInstr &MI,
109 MachineOperand &FlagUse, CondRegArray &CondRegs);
110 void rewriteCMov(MachineBasicBlock &TestMBB,
111 MachineBasicBlock::iterator TestPos, const DebugLoc &TestLoc,
112 MachineInstr &CMovI, MachineOperand &FlagUse,
113 CondRegArray &CondRegs);
114 void rewriteFCMov(MachineBasicBlock &TestMBB,
115 MachineBasicBlock::iterator TestPos,
116 const DebugLoc &TestLoc, MachineInstr &CMovI,
117 MachineOperand &FlagUse, CondRegArray &CondRegs);
118 void rewriteCondJmp(MachineBasicBlock &TestMBB,
119 MachineBasicBlock::iterator TestPos,
120 const DebugLoc &TestLoc, MachineInstr &JmpI,
121 CondRegArray &CondRegs);
122 void rewriteCopy(MachineInstr &MI, MachineOperand &FlagUse,
123 MachineInstr &CopyDefI);
124 void rewriteSetCC(MachineBasicBlock &TestMBB,
125 MachineBasicBlock::iterator TestPos,
126 const DebugLoc &TestLoc, MachineInstr &SetCCI,
127 MachineOperand &FlagUse, CondRegArray &CondRegs);
130 } // end anonymous namespace
132 INITIALIZE_PASS_BEGIN(X86FlagsCopyLoweringPass, DEBUG_TYPE,
133 "X86 EFLAGS copy lowering", false, false)
134 INITIALIZE_PASS_END(X86FlagsCopyLoweringPass, DEBUG_TYPE,
135 "X86 EFLAGS copy lowering", false, false)
137 FunctionPass *llvm::createX86FlagsCopyLoweringPass() {
138 return new X86FlagsCopyLoweringPass();
141 char X86FlagsCopyLoweringPass::ID = 0;
143 void X86FlagsCopyLoweringPass::getAnalysisUsage(AnalysisUsage &AU) const {
144 AU.addRequired<MachineDominatorTree>();
145 MachineFunctionPass::getAnalysisUsage(AU);
148 namespace {
149 /// An enumeration of the arithmetic instruction mnemonics which have
150 /// interesting flag semantics.
152 /// We can map instruction opcodes into these mnemonics to make it easy to
153 /// dispatch with specific functionality.
154 enum class FlagArithMnemonic {
155 ADC,
156 RCL,
157 RCR,
158 SBB,
159 SETB,
161 } // namespace
163 static FlagArithMnemonic getMnemonicFromOpcode(unsigned Opcode) {
164 switch (Opcode) {
165 default:
166 report_fatal_error("No support for lowering a copy into EFLAGS when used "
167 "by this instruction!");
169 #define LLVM_EXPAND_INSTR_SIZES(MNEMONIC, SUFFIX) \
170 case X86::MNEMONIC##8##SUFFIX: \
171 case X86::MNEMONIC##16##SUFFIX: \
172 case X86::MNEMONIC##32##SUFFIX: \
173 case X86::MNEMONIC##64##SUFFIX:
175 #define LLVM_EXPAND_ADC_SBB_INSTR(MNEMONIC) \
176 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr) \
177 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rr_REV) \
178 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, rm) \
179 LLVM_EXPAND_INSTR_SIZES(MNEMONIC, mr) \
180 case X86::MNEMONIC##8ri: \
181 case X86::MNEMONIC##16ri8: \
182 case X86::MNEMONIC##32ri8: \
183 case X86::MNEMONIC##64ri8: \
184 case X86::MNEMONIC##16ri: \
185 case X86::MNEMONIC##32ri: \
186 case X86::MNEMONIC##64ri32: \
187 case X86::MNEMONIC##8mi: \
188 case X86::MNEMONIC##16mi8: \
189 case X86::MNEMONIC##32mi8: \
190 case X86::MNEMONIC##64mi8: \
191 case X86::MNEMONIC##16mi: \
192 case X86::MNEMONIC##32mi: \
193 case X86::MNEMONIC##64mi32: \
194 case X86::MNEMONIC##8i8: \
195 case X86::MNEMONIC##16i16: \
196 case X86::MNEMONIC##32i32: \
197 case X86::MNEMONIC##64i32:
199 LLVM_EXPAND_ADC_SBB_INSTR(ADC)
200 return FlagArithMnemonic::ADC;
202 LLVM_EXPAND_ADC_SBB_INSTR(SBB)
203 return FlagArithMnemonic::SBB;
205 #undef LLVM_EXPAND_ADC_SBB_INSTR
207 LLVM_EXPAND_INSTR_SIZES(RCL, rCL)
208 LLVM_EXPAND_INSTR_SIZES(RCL, r1)
209 LLVM_EXPAND_INSTR_SIZES(RCL, ri)
210 return FlagArithMnemonic::RCL;
212 LLVM_EXPAND_INSTR_SIZES(RCR, rCL)
213 LLVM_EXPAND_INSTR_SIZES(RCR, r1)
214 LLVM_EXPAND_INSTR_SIZES(RCR, ri)
215 return FlagArithMnemonic::RCR;
217 #undef LLVM_EXPAND_INSTR_SIZES
219 case X86::SETB_C32r:
220 case X86::SETB_C64r:
221 return FlagArithMnemonic::SETB;
225 static MachineBasicBlock &splitBlock(MachineBasicBlock &MBB,
226 MachineInstr &SplitI,
227 const X86InstrInfo &TII) {
228 MachineFunction &MF = *MBB.getParent();
230 assert(SplitI.getParent() == &MBB &&
231 "Split instruction must be in the split block!");
232 assert(SplitI.isBranch() &&
233 "Only designed to split a tail of branch instructions!");
234 assert(X86::getCondFromBranch(SplitI) != X86::COND_INVALID &&
235 "Must split on an actual jCC instruction!");
237 // Dig out the previous instruction to the split point.
238 MachineInstr &PrevI = *std::prev(SplitI.getIterator());
239 assert(PrevI.isBranch() && "Must split after a branch!");
240 assert(X86::getCondFromBranch(PrevI) != X86::COND_INVALID &&
241 "Must split after an actual jCC instruction!");
242 assert(!std::prev(PrevI.getIterator())->isTerminator() &&
243 "Must only have this one terminator prior to the split!");
245 // Grab the one successor edge that will stay in `MBB`.
246 MachineBasicBlock &UnsplitSucc = *PrevI.getOperand(0).getMBB();
248 // Analyze the original block to see if we are actually splitting an edge
249 // into two edges. This can happen when we have multiple conditional jumps to
250 // the same successor.
251 bool IsEdgeSplit =
252 std::any_of(SplitI.getIterator(), MBB.instr_end(),
253 [&](MachineInstr &MI) {
254 assert(MI.isTerminator() &&
255 "Should only have spliced terminators!");
256 return llvm::any_of(
257 MI.operands(), [&](MachineOperand &MOp) {
258 return MOp.isMBB() && MOp.getMBB() == &UnsplitSucc;
260 }) ||
261 MBB.getFallThrough() == &UnsplitSucc;
263 MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();
265 // Insert the new block immediately after the current one. Any existing
266 // fallthrough will be sunk into this new block anyways.
267 MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);
269 // Splice the tail of instructions into the new block.
270 NewMBB.splice(NewMBB.end(), &MBB, SplitI.getIterator(), MBB.end());
272 // Copy the necessary succesors (and their probability info) into the new
273 // block.
274 for (auto SI = MBB.succ_begin(), SE = MBB.succ_end(); SI != SE; ++SI)
275 if (IsEdgeSplit || *SI != &UnsplitSucc)
276 NewMBB.copySuccessor(&MBB, SI);
277 // Normalize the probabilities if we didn't end up splitting the edge.
278 if (!IsEdgeSplit)
279 NewMBB.normalizeSuccProbs();
281 // Now replace all of the moved successors in the original block with the new
282 // block. This will merge their probabilities.
283 for (MachineBasicBlock *Succ : NewMBB.successors())
284 if (Succ != &UnsplitSucc)
285 MBB.replaceSuccessor(Succ, &NewMBB);
287 // We should always end up replacing at least one successor.
288 assert(MBB.isSuccessor(&NewMBB) &&
289 "Failed to make the new block a successor!");
291 // Now update all the PHIs.
292 for (MachineBasicBlock *Succ : NewMBB.successors()) {
293 for (MachineInstr &MI : *Succ) {
294 if (!MI.isPHI())
295 break;
297 for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
298 OpIdx += 2) {
299 MachineOperand &OpV = MI.getOperand(OpIdx);
300 MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
301 assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
302 if (OpMBB.getMBB() != &MBB)
303 continue;
305 // Replace the operand for unsplit successors
306 if (!IsEdgeSplit || Succ != &UnsplitSucc) {
307 OpMBB.setMBB(&NewMBB);
309 // We have to continue scanning as there may be multiple entries in
310 // the PHI.
311 continue;
314 // When we have split the edge append a new successor.
315 MI.addOperand(MF, OpV);
316 MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
317 break;
322 return NewMBB;
325 static X86::CondCode getCondFromFCMOV(unsigned Opcode) {
326 switch (Opcode) {
327 default: return X86::COND_INVALID;
328 case X86::CMOVBE_Fp32: case X86::CMOVBE_Fp64: case X86::CMOVBE_Fp80:
329 return X86::COND_BE;
330 case X86::CMOVB_Fp32: case X86::CMOVB_Fp64: case X86::CMOVB_Fp80:
331 return X86::COND_B;
332 case X86::CMOVE_Fp32: case X86::CMOVE_Fp64: case X86::CMOVE_Fp80:
333 return X86::COND_E;
334 case X86::CMOVNBE_Fp32: case X86::CMOVNBE_Fp64: case X86::CMOVNBE_Fp80:
335 return X86::COND_A;
336 case X86::CMOVNB_Fp32: case X86::CMOVNB_Fp64: case X86::CMOVNB_Fp80:
337 return X86::COND_AE;
338 case X86::CMOVNE_Fp32: case X86::CMOVNE_Fp64: case X86::CMOVNE_Fp80:
339 return X86::COND_NE;
340 case X86::CMOVNP_Fp32: case X86::CMOVNP_Fp64: case X86::CMOVNP_Fp80:
341 return X86::COND_NP;
342 case X86::CMOVP_Fp32: case X86::CMOVP_Fp64: case X86::CMOVP_Fp80:
343 return X86::COND_P;
347 bool X86FlagsCopyLoweringPass::runOnMachineFunction(MachineFunction &MF) {
348 LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
349 << " **********\n");
351 Subtarget = &MF.getSubtarget<X86Subtarget>();
352 MRI = &MF.getRegInfo();
353 TII = Subtarget->getInstrInfo();
354 TRI = Subtarget->getRegisterInfo();
355 MDT = &getAnalysis<MachineDominatorTree>();
356 PromoteRC = &X86::GR8RegClass;
358 if (MF.begin() == MF.end())
359 // Nothing to do for a degenerate empty function...
360 return false;
362 // Collect the copies in RPO so that when there are chains where a copy is in
363 // turn copied again we visit the first one first. This ensures we can find
364 // viable locations for testing the original EFLAGS that dominate all the
365 // uses across complex CFGs.
366 SmallVector<MachineInstr *, 4> Copies;
367 ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
368 for (MachineBasicBlock *MBB : RPOT)
369 for (MachineInstr &MI : *MBB)
370 if (MI.getOpcode() == TargetOpcode::COPY &&
371 MI.getOperand(0).getReg() == X86::EFLAGS)
372 Copies.push_back(&MI);
374 for (MachineInstr *CopyI : Copies) {
375 MachineBasicBlock &MBB = *CopyI->getParent();
377 MachineOperand &VOp = CopyI->getOperand(1);
378 assert(VOp.isReg() &&
379 "The input to the copy for EFLAGS should always be a register!");
380 MachineInstr &CopyDefI = *MRI->getVRegDef(VOp.getReg());
381 if (CopyDefI.getOpcode() != TargetOpcode::COPY) {
382 // FIXME: The big likely candidate here are PHI nodes. We could in theory
383 // handle PHI nodes, but it gets really, really hard. Insanely hard. Hard
384 // enough that it is probably better to change every other part of LLVM
385 // to avoid creating them. The issue is that once we have PHIs we won't
386 // know which original EFLAGS value we need to capture with our setCCs
387 // below. The end result will be computing a complete set of setCCs that
388 // we *might* want, computing them in every place where we copy *out* of
389 // EFLAGS and then doing SSA formation on all of them to insert necessary
390 // PHI nodes and consume those here. Then hoping that somehow we DCE the
391 // unnecessary ones. This DCE seems very unlikely to be successful and so
392 // we will almost certainly end up with a glut of dead setCC
393 // instructions. Until we have a motivating test case and fail to avoid
394 // it by changing other parts of LLVM's lowering, we refuse to handle
395 // this complex case here.
396 LLVM_DEBUG(
397 dbgs() << "ERROR: Encountered unexpected def of an eflags copy: ";
398 CopyDefI.dump());
399 report_fatal_error(
400 "Cannot lower EFLAGS copy unless it is defined in turn by a copy!");
403 auto Cleanup = make_scope_exit([&] {
404 // All uses of the EFLAGS copy are now rewritten, kill the copy into
405 // eflags and if dead the copy from.
406 CopyI->eraseFromParent();
407 if (MRI->use_empty(CopyDefI.getOperand(0).getReg()))
408 CopyDefI.eraseFromParent();
409 ++NumCopiesEliminated;
412 MachineOperand &DOp = CopyI->getOperand(0);
413 assert(DOp.isDef() && "Expected register def!");
414 assert(DOp.getReg() == X86::EFLAGS && "Unexpected copy def register!");
415 if (DOp.isDead())
416 continue;
418 MachineBasicBlock *TestMBB = CopyDefI.getParent();
419 auto TestPos = CopyDefI.getIterator();
420 DebugLoc TestLoc = CopyDefI.getDebugLoc();
422 LLVM_DEBUG(dbgs() << "Rewriting copy: "; CopyI->dump());
424 // Walk up across live-in EFLAGS to find where they were actually def'ed.
426 // This copy's def may just be part of a region of blocks covered by
427 // a single def of EFLAGS and we want to find the top of that region where
428 // possible.
430 // This is essentially a search for a *candidate* reaching definition
431 // location. We don't need to ever find the actual reaching definition here,
432 // but we want to walk up the dominator tree to find the highest point which
433 // would be viable for such a definition.
434 auto HasEFLAGSClobber = [&](MachineBasicBlock::iterator Begin,
435 MachineBasicBlock::iterator End) {
436 // Scan backwards as we expect these to be relatively short and often find
437 // a clobber near the end.
438 return llvm::any_of(
439 llvm::reverse(llvm::make_range(Begin, End)), [&](MachineInstr &MI) {
440 // Flag any instruction (other than the copy we are
441 // currently rewriting) that defs EFLAGS.
442 return &MI != CopyI && MI.findRegisterDefOperand(X86::EFLAGS);
445 auto HasEFLAGSClobberPath = [&](MachineBasicBlock *BeginMBB,
446 MachineBasicBlock *EndMBB) {
447 assert(MDT->dominates(BeginMBB, EndMBB) &&
448 "Only support paths down the dominator tree!");
449 SmallPtrSet<MachineBasicBlock *, 4> Visited;
450 SmallVector<MachineBasicBlock *, 4> Worklist;
451 // We terminate at the beginning. No need to scan it.
452 Visited.insert(BeginMBB);
453 Worklist.push_back(EndMBB);
454 do {
455 auto *MBB = Worklist.pop_back_val();
456 for (auto *PredMBB : MBB->predecessors()) {
457 if (!Visited.insert(PredMBB).second)
458 continue;
459 if (HasEFLAGSClobber(PredMBB->begin(), PredMBB->end()))
460 return true;
461 // Enqueue this block to walk its predecessors.
462 Worklist.push_back(PredMBB);
464 } while (!Worklist.empty());
465 // No clobber found along a path from the begin to end.
466 return false;
468 while (TestMBB->isLiveIn(X86::EFLAGS) && !TestMBB->pred_empty() &&
469 !HasEFLAGSClobber(TestMBB->begin(), TestPos)) {
470 // Find the nearest common dominator of the predecessors, as
471 // that will be the best candidate to hoist into.
472 MachineBasicBlock *HoistMBB =
473 std::accumulate(std::next(TestMBB->pred_begin()), TestMBB->pred_end(),
474 *TestMBB->pred_begin(),
475 [&](MachineBasicBlock *LHS, MachineBasicBlock *RHS) {
476 return MDT->findNearestCommonDominator(LHS, RHS);
479 // Now we need to scan all predecessors that may be reached along paths to
480 // the hoist block. A clobber anywhere in any of these blocks the hoist.
481 // Note that this even handles loops because we require *no* clobbers.
482 if (HasEFLAGSClobberPath(HoistMBB, TestMBB))
483 break;
485 // We also need the terminators to not sneakily clobber flags.
486 if (HasEFLAGSClobber(HoistMBB->getFirstTerminator()->getIterator(),
487 HoistMBB->instr_end()))
488 break;
490 // We found a viable location, hoist our test position to it.
491 TestMBB = HoistMBB;
492 TestPos = TestMBB->getFirstTerminator()->getIterator();
493 // Clear the debug location as it would just be confusing after hoisting.
494 TestLoc = DebugLoc();
496 LLVM_DEBUG({
497 auto DefIt = llvm::find_if(
498 llvm::reverse(llvm::make_range(TestMBB->instr_begin(), TestPos)),
499 [&](MachineInstr &MI) {
500 return MI.findRegisterDefOperand(X86::EFLAGS);
502 if (DefIt.base() != TestMBB->instr_begin()) {
503 dbgs() << " Using EFLAGS defined by: ";
504 DefIt->dump();
505 } else {
506 dbgs() << " Using live-in flags for BB:\n";
507 TestMBB->dump();
511 // While rewriting uses, we buffer jumps and rewrite them in a second pass
512 // because doing so will perturb the CFG that we are walking to find the
513 // uses in the first place.
514 SmallVector<MachineInstr *, 4> JmpIs;
516 // Gather the condition flags that have already been preserved in
517 // registers. We do this from scratch each time as we expect there to be
518 // very few of them and we expect to not revisit the same copy definition
519 // many times. If either of those change sufficiently we could build a map
520 // of these up front instead.
521 CondRegArray CondRegs = collectCondsInRegs(*TestMBB, TestPos);
523 // Collect the basic blocks we need to scan. Typically this will just be
524 // a single basic block but we may have to scan multiple blocks if the
525 // EFLAGS copy lives into successors.
526 SmallVector<MachineBasicBlock *, 2> Blocks;
527 SmallPtrSet<MachineBasicBlock *, 2> VisitedBlocks;
528 Blocks.push_back(&MBB);
530 do {
531 MachineBasicBlock &UseMBB = *Blocks.pop_back_val();
533 // Track when if/when we find a kill of the flags in this block.
534 bool FlagsKilled = false;
536 // In most cases, we walk from the beginning to the end of the block. But
537 // when the block is the same block as the copy is from, we will visit it
538 // twice. The first time we start from the copy and go to the end. The
539 // second time we start from the beginning and go to the copy. This lets
540 // us handle copies inside of cycles.
541 // FIXME: This loop is *super* confusing. This is at least in part
542 // a symptom of all of this routine needing to be refactored into
543 // documentable components. Once done, there may be a better way to write
544 // this loop.
545 for (auto MII = (&UseMBB == &MBB && !VisitedBlocks.count(&UseMBB))
546 ? std::next(CopyI->getIterator())
547 : UseMBB.instr_begin(),
548 MIE = UseMBB.instr_end();
549 MII != MIE;) {
550 MachineInstr &MI = *MII++;
551 // If we are in the original copy block and encounter either the copy
552 // def or the copy itself, break so that we don't re-process any part of
553 // the block or process the instructions in the range that was copied
554 // over.
555 if (&MI == CopyI || &MI == &CopyDefI) {
556 assert(&UseMBB == &MBB && VisitedBlocks.count(&MBB) &&
557 "Should only encounter these on the second pass over the "
558 "original block.");
559 break;
562 MachineOperand *FlagUse = MI.findRegisterUseOperand(X86::EFLAGS);
563 if (!FlagUse) {
564 if (MI.findRegisterDefOperand(X86::EFLAGS)) {
565 // If EFLAGS are defined, it's as-if they were killed. We can stop
566 // scanning here.
568 // NB!!! Many instructions only modify some flags. LLVM currently
569 // models this as clobbering all flags, but if that ever changes
570 // this will need to be carefully updated to handle that more
571 // complex logic.
572 FlagsKilled = true;
573 break;
575 continue;
578 LLVM_DEBUG(dbgs() << " Rewriting use: "; MI.dump());
580 // Check the kill flag before we rewrite as that may change it.
581 if (FlagUse->isKill())
582 FlagsKilled = true;
584 // Once we encounter a branch, the rest of the instructions must also be
585 // branches. We can't rewrite in place here, so we handle them below.
587 // Note that we don't have to handle tail calls here, even conditional
588 // tail calls, as those are not introduced into the X86 MI until post-RA
589 // branch folding or black placement. As a consequence, we get to deal
590 // with the simpler formulation of conditional branches followed by tail
591 // calls.
592 if (X86::getCondFromBranch(MI) != X86::COND_INVALID) {
593 auto JmpIt = MI.getIterator();
594 do {
595 JmpIs.push_back(&*JmpIt);
596 ++JmpIt;
597 } while (JmpIt != UseMBB.instr_end() &&
598 X86::getCondFromBranch(*JmpIt) !=
599 X86::COND_INVALID);
600 break;
603 // Otherwise we can just rewrite in-place.
604 if (X86::getCondFromCMov(MI) != X86::COND_INVALID) {
605 rewriteCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
606 } else if (getCondFromFCMOV(MI.getOpcode()) != X86::COND_INVALID) {
607 rewriteFCMov(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
608 } else if (X86::getCondFromSETCC(MI) != X86::COND_INVALID) {
609 rewriteSetCC(*TestMBB, TestPos, TestLoc, MI, *FlagUse, CondRegs);
610 } else if (MI.getOpcode() == TargetOpcode::COPY) {
611 rewriteCopy(MI, *FlagUse, CopyDefI);
612 } else {
613 // We assume all other instructions that use flags also def them.
614 assert(MI.findRegisterDefOperand(X86::EFLAGS) &&
615 "Expected a def of EFLAGS for this instruction!");
617 // NB!!! Several arithmetic instructions only *partially* update
618 // flags. Theoretically, we could generate MI code sequences that
619 // would rely on this fact and observe different flags independently.
620 // But currently LLVM models all of these instructions as clobbering
621 // all the flags in an undef way. We rely on that to simplify the
622 // logic.
623 FlagsKilled = true;
625 // Generically handle remaining uses as arithmetic instructions.
626 rewriteArithmetic(*TestMBB, TestPos, TestLoc, MI, *FlagUse,
627 CondRegs);
630 // If this was the last use of the flags, we're done.
631 if (FlagsKilled)
632 break;
635 // If the flags were killed, we're done with this block.
636 if (FlagsKilled)
637 continue;
639 // Otherwise we need to scan successors for ones where the flags live-in
640 // and queue those up for processing.
641 for (MachineBasicBlock *SuccMBB : UseMBB.successors())
642 if (SuccMBB->isLiveIn(X86::EFLAGS) &&
643 VisitedBlocks.insert(SuccMBB).second) {
644 // We currently don't do any PHI insertion and so we require that the
645 // test basic block dominates all of the use basic blocks. Further, we
646 // can't have a cycle from the test block back to itself as that would
647 // create a cycle requiring a PHI to break it.
649 // We could in theory do PHI insertion here if it becomes useful by
650 // just taking undef values in along every edge that we don't trace
651 // this EFLAGS copy along. This isn't as bad as fully general PHI
652 // insertion, but still seems like a great deal of complexity.
654 // Because it is theoretically possible that some earlier MI pass or
655 // other lowering transformation could induce this to happen, we do
656 // a hard check even in non-debug builds here.
657 if (SuccMBB == TestMBB || !MDT->dominates(TestMBB, SuccMBB)) {
658 LLVM_DEBUG({
659 dbgs()
660 << "ERROR: Encountered use that is not dominated by our test "
661 "basic block! Rewriting this would require inserting PHI "
662 "nodes to track the flag state across the CFG.\n\nTest "
663 "block:\n";
664 TestMBB->dump();
665 dbgs() << "Use block:\n";
666 SuccMBB->dump();
668 report_fatal_error(
669 "Cannot lower EFLAGS copy when original copy def "
670 "does not dominate all uses.");
673 Blocks.push_back(SuccMBB);
675 // After this, EFLAGS will be recreated before each use.
676 SuccMBB->removeLiveIn(X86::EFLAGS);
678 } while (!Blocks.empty());
680 // Now rewrite the jumps that use the flags. These we handle specially
681 // because if there are multiple jumps in a single basic block we'll have
682 // to do surgery on the CFG.
683 MachineBasicBlock *LastJmpMBB = nullptr;
684 for (MachineInstr *JmpI : JmpIs) {
685 // Past the first jump within a basic block we need to split the blocks
686 // apart.
687 if (JmpI->getParent() == LastJmpMBB)
688 splitBlock(*JmpI->getParent(), *JmpI, *TII);
689 else
690 LastJmpMBB = JmpI->getParent();
692 rewriteCondJmp(*TestMBB, TestPos, TestLoc, *JmpI, CondRegs);
695 // FIXME: Mark the last use of EFLAGS before the copy's def as a kill if
696 // the copy's def operand is itself a kill.
699 #ifndef NDEBUG
700 for (MachineBasicBlock &MBB : MF)
701 for (MachineInstr &MI : MBB)
702 if (MI.getOpcode() == TargetOpcode::COPY &&
703 (MI.getOperand(0).getReg() == X86::EFLAGS ||
704 MI.getOperand(1).getReg() == X86::EFLAGS)) {
705 LLVM_DEBUG(dbgs() << "ERROR: Found a COPY involving EFLAGS: ";
706 MI.dump());
707 llvm_unreachable("Unlowered EFLAGS copy!");
709 #endif
711 return true;
714 /// Collect any conditions that have already been set in registers so that we
715 /// can re-use them rather than adding duplicates.
716 CondRegArray X86FlagsCopyLoweringPass::collectCondsInRegs(
717 MachineBasicBlock &MBB, MachineBasicBlock::iterator TestPos) {
718 CondRegArray CondRegs = {};
720 // Scan backwards across the range of instructions with live EFLAGS.
721 for (MachineInstr &MI :
722 llvm::reverse(llvm::make_range(MBB.begin(), TestPos))) {
723 X86::CondCode Cond = X86::getCondFromSETCC(MI);
724 if (Cond != X86::COND_INVALID && !MI.mayStore() &&
725 MI.getOperand(0).isReg() && MI.getOperand(0).getReg().isVirtual()) {
726 assert(MI.getOperand(0).isDef() &&
727 "A non-storing SETcc should always define a register!");
728 CondRegs[Cond] = MI.getOperand(0).getReg();
731 // Stop scanning when we see the first definition of the EFLAGS as prior to
732 // this we would potentially capture the wrong flag state.
733 if (MI.findRegisterDefOperand(X86::EFLAGS))
734 break;
736 return CondRegs;
739 Register X86FlagsCopyLoweringPass::promoteCondToReg(
740 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
741 const DebugLoc &TestLoc, X86::CondCode Cond) {
742 Register Reg = MRI->createVirtualRegister(PromoteRC);
743 auto SetI = BuildMI(TestMBB, TestPos, TestLoc,
744 TII->get(X86::SETCCr), Reg).addImm(Cond);
745 (void)SetI;
746 LLVM_DEBUG(dbgs() << " save cond: "; SetI->dump());
747 ++NumSetCCsInserted;
748 return Reg;
751 std::pair<unsigned, bool> X86FlagsCopyLoweringPass::getCondOrInverseInReg(
752 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
753 const DebugLoc &TestLoc, X86::CondCode Cond, CondRegArray &CondRegs) {
754 unsigned &CondReg = CondRegs[Cond];
755 unsigned &InvCondReg = CondRegs[X86::GetOppositeBranchCondition(Cond)];
756 if (!CondReg && !InvCondReg)
757 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
759 if (CondReg)
760 return {CondReg, false};
761 else
762 return {InvCondReg, true};
765 void X86FlagsCopyLoweringPass::insertTest(MachineBasicBlock &MBB,
766 MachineBasicBlock::iterator Pos,
767 const DebugLoc &Loc, unsigned Reg) {
768 auto TestI =
769 BuildMI(MBB, Pos, Loc, TII->get(X86::TEST8rr)).addReg(Reg).addReg(Reg);
770 (void)TestI;
771 LLVM_DEBUG(dbgs() << " test cond: "; TestI->dump());
772 ++NumTestsInserted;
775 void X86FlagsCopyLoweringPass::rewriteArithmetic(
776 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
777 const DebugLoc &TestLoc, MachineInstr &MI, MachineOperand &FlagUse,
778 CondRegArray &CondRegs) {
779 // Arithmetic is either reading CF or OF. Figure out which condition we need
780 // to preserve in a register.
781 X86::CondCode Cond = X86::COND_INVALID;
783 // The addend to use to reset CF or OF when added to the flag value.
784 int Addend = 0;
786 switch (getMnemonicFromOpcode(MI.getOpcode())) {
787 case FlagArithMnemonic::ADC:
788 case FlagArithMnemonic::RCL:
789 case FlagArithMnemonic::RCR:
790 case FlagArithMnemonic::SBB:
791 case FlagArithMnemonic::SETB:
792 Cond = X86::COND_B; // CF == 1
793 // Set up an addend that when one is added will need a carry due to not
794 // having a higher bit available.
795 Addend = 255;
796 break;
799 // Now get a register that contains the value of the flag input to the
800 // arithmetic. We require exactly this flag to simplify the arithmetic
801 // required to materialize it back into the flag.
802 unsigned &CondReg = CondRegs[Cond];
803 if (!CondReg)
804 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
806 MachineBasicBlock &MBB = *MI.getParent();
808 // Insert an instruction that will set the flag back to the desired value.
809 Register TmpReg = MRI->createVirtualRegister(PromoteRC);
810 auto AddI =
811 BuildMI(MBB, MI.getIterator(), MI.getDebugLoc(), TII->get(X86::ADD8ri))
812 .addDef(TmpReg, RegState::Dead)
813 .addReg(CondReg)
814 .addImm(Addend);
815 (void)AddI;
816 LLVM_DEBUG(dbgs() << " add cond: "; AddI->dump());
817 ++NumAddsInserted;
818 FlagUse.setIsKill(true);
821 void X86FlagsCopyLoweringPass::rewriteCMov(MachineBasicBlock &TestMBB,
822 MachineBasicBlock::iterator TestPos,
823 const DebugLoc &TestLoc,
824 MachineInstr &CMovI,
825 MachineOperand &FlagUse,
826 CondRegArray &CondRegs) {
827 // First get the register containing this specific condition.
828 X86::CondCode Cond = X86::getCondFromCMov(CMovI);
829 unsigned CondReg;
830 bool Inverted;
831 std::tie(CondReg, Inverted) =
832 getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
834 MachineBasicBlock &MBB = *CMovI.getParent();
836 // Insert a direct test of the saved register.
837 insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
839 // Rewrite the CMov to use the !ZF flag from the test, and then kill its use
840 // of the flags afterward.
841 CMovI.getOperand(CMovI.getDesc().getNumOperands() - 1)
842 .setImm(Inverted ? X86::COND_E : X86::COND_NE);
843 FlagUse.setIsKill(true);
844 LLVM_DEBUG(dbgs() << " fixed cmov: "; CMovI.dump());
847 void X86FlagsCopyLoweringPass::rewriteFCMov(MachineBasicBlock &TestMBB,
848 MachineBasicBlock::iterator TestPos,
849 const DebugLoc &TestLoc,
850 MachineInstr &CMovI,
851 MachineOperand &FlagUse,
852 CondRegArray &CondRegs) {
853 // First get the register containing this specific condition.
854 X86::CondCode Cond = getCondFromFCMOV(CMovI.getOpcode());
855 unsigned CondReg;
856 bool Inverted;
857 std::tie(CondReg, Inverted) =
858 getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
860 MachineBasicBlock &MBB = *CMovI.getParent();
862 // Insert a direct test of the saved register.
863 insertTest(MBB, CMovI.getIterator(), CMovI.getDebugLoc(), CondReg);
865 auto getFCMOVOpcode = [](unsigned Opcode, bool Inverted) {
866 switch (Opcode) {
867 default: llvm_unreachable("Unexpected opcode!");
868 case X86::CMOVBE_Fp32: case X86::CMOVNBE_Fp32:
869 case X86::CMOVB_Fp32: case X86::CMOVNB_Fp32:
870 case X86::CMOVE_Fp32: case X86::CMOVNE_Fp32:
871 case X86::CMOVP_Fp32: case X86::CMOVNP_Fp32:
872 return Inverted ? X86::CMOVE_Fp32 : X86::CMOVNE_Fp32;
873 case X86::CMOVBE_Fp64: case X86::CMOVNBE_Fp64:
874 case X86::CMOVB_Fp64: case X86::CMOVNB_Fp64:
875 case X86::CMOVE_Fp64: case X86::CMOVNE_Fp64:
876 case X86::CMOVP_Fp64: case X86::CMOVNP_Fp64:
877 return Inverted ? X86::CMOVE_Fp64 : X86::CMOVNE_Fp64;
878 case X86::CMOVBE_Fp80: case X86::CMOVNBE_Fp80:
879 case X86::CMOVB_Fp80: case X86::CMOVNB_Fp80:
880 case X86::CMOVE_Fp80: case X86::CMOVNE_Fp80:
881 case X86::CMOVP_Fp80: case X86::CMOVNP_Fp80:
882 return Inverted ? X86::CMOVE_Fp80 : X86::CMOVNE_Fp80;
886 // Rewrite the CMov to use the !ZF flag from the test.
887 CMovI.setDesc(TII->get(getFCMOVOpcode(CMovI.getOpcode(), Inverted)));
888 FlagUse.setIsKill(true);
889 LLVM_DEBUG(dbgs() << " fixed fcmov: "; CMovI.dump());
892 void X86FlagsCopyLoweringPass::rewriteCondJmp(
893 MachineBasicBlock &TestMBB, MachineBasicBlock::iterator TestPos,
894 const DebugLoc &TestLoc, MachineInstr &JmpI, CondRegArray &CondRegs) {
895 // First get the register containing this specific condition.
896 X86::CondCode Cond = X86::getCondFromBranch(JmpI);
897 unsigned CondReg;
898 bool Inverted;
899 std::tie(CondReg, Inverted) =
900 getCondOrInverseInReg(TestMBB, TestPos, TestLoc, Cond, CondRegs);
902 MachineBasicBlock &JmpMBB = *JmpI.getParent();
904 // Insert a direct test of the saved register.
905 insertTest(JmpMBB, JmpI.getIterator(), JmpI.getDebugLoc(), CondReg);
907 // Rewrite the jump to use the !ZF flag from the test, and kill its use of
908 // flags afterward.
909 JmpI.getOperand(1).setImm(Inverted ? X86::COND_E : X86::COND_NE);
910 JmpI.findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);
911 LLVM_DEBUG(dbgs() << " fixed jCC: "; JmpI.dump());
914 void X86FlagsCopyLoweringPass::rewriteCopy(MachineInstr &MI,
915 MachineOperand &FlagUse,
916 MachineInstr &CopyDefI) {
917 // Just replace this copy with the original copy def.
918 MRI->replaceRegWith(MI.getOperand(0).getReg(),
919 CopyDefI.getOperand(0).getReg());
920 MI.eraseFromParent();
923 void X86FlagsCopyLoweringPass::rewriteSetCC(MachineBasicBlock &TestMBB,
924 MachineBasicBlock::iterator TestPos,
925 const DebugLoc &TestLoc,
926 MachineInstr &SetCCI,
927 MachineOperand &FlagUse,
928 CondRegArray &CondRegs) {
929 X86::CondCode Cond = X86::getCondFromSETCC(SetCCI);
930 // Note that we can't usefully rewrite this to the inverse without complex
931 // analysis of the users of the setCC. Largely we rely on duplicates which
932 // could have been avoided already being avoided here.
933 unsigned &CondReg = CondRegs[Cond];
934 if (!CondReg)
935 CondReg = promoteCondToReg(TestMBB, TestPos, TestLoc, Cond);
937 // Rewriting a register def is trivial: we just replace the register and
938 // remove the setcc.
939 if (!SetCCI.mayStore()) {
940 assert(SetCCI.getOperand(0).isReg() &&
941 "Cannot have a non-register defined operand to SETcc!");
942 Register OldReg = SetCCI.getOperand(0).getReg();
943 // Drop Kill flags on the old register before replacing. CondReg may have
944 // a longer live range.
945 MRI->clearKillFlags(OldReg);
946 MRI->replaceRegWith(OldReg, CondReg);
947 SetCCI.eraseFromParent();
948 return;
951 // Otherwise, we need to emit a store.
952 auto MIB = BuildMI(*SetCCI.getParent(), SetCCI.getIterator(),
953 SetCCI.getDebugLoc(), TII->get(X86::MOV8mr));
954 // Copy the address operands.
955 for (int i = 0; i < X86::AddrNumOperands; ++i)
956 MIB.add(SetCCI.getOperand(i));
958 MIB.addReg(CondReg);
960 MIB.setMemRefs(SetCCI.memoperands());
962 SetCCI.eraseFromParent();